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Summary 

Improvements in seismic data quality can significantly 
enhance hydrocarbon production, motivating the 
investigation of methods to acquire more accurate and 
reliable data. In many cases there will be considerable 
uncertainty in reservoir properties and in the level of error 
in the data. We present an approach for determining the 
potential value of competing seismic survey methods to 
improve knowledge of reservoir properties to inform 
decisions related to reservoir management. Monte Carlo 
simulations using an earth model based on a Gulf of 
Mexico site, and seismic error models, provide statistical 
estimates of the ability of seismic amplitudes to infer 
porosity and reservoir thickness. Bayesian decision analysis 
methods then facilitate the optimization of an infill drilling 
program and allow the quantification of the economic value 
of the different seismic data sets. 
 
Introduction 

Seismic data play an important role in reservoir 
characterization, in application to tasks ranging from the 
selection of a drilling target to the direct detection of fluids 
in reservoir formations. Detailed and successful reservoir 
characterization requires accurate and reliable seismic data 
for optimal results. Improvements in such factors as signal-
to-noise ratio, bandwidth, streamer cable position, or 
resolution can help improve seismic image quality and the 
results of interpretation methods such as amplitude 
variation with offset (AVO) in ways that significantly 
improve knowledge of reservoir structure or the variation 
of porosity and thickness, for example. 
 
For these reasons, improving data acquisition to increase 
seismic accuracy can be very beneficial. The influence of 
acquisition geometry on seismic imaging, for example, can 
be quantified to allow a quantitative comparison of the 
benefits of alternative acquisition geometries. In particular, 
model-based methods for these comparisons allow survey 
design to be customized to specific sites (Vermeer, 1999; 
Gibson and Tzimeas, 2002). However, these approaches 
tend to rely on comparisons of a small number of models, 
perhaps only one, to compare the influence of changes in 
acquisition procedures on image quality, examining factors 
such as spatial resolution. This neglects uncertainty in the 
model or acquisition technology. 
 
Bayesian decision theory is a useful tool for addressing this 
problem. Given statistical models for the relationships 
between the quantities of interest (e.g., porosity) and some 
observable form of data (e.g., seismic amplitude), 
application of Bayes’ Theorem provides a means for 

determining the probability of accurately making decisions 
based on such data. Recent work has applied an extension 
of this, Bayesian value of information (VOI) theory, to 
investigate the role of seismic data in the process of 
selecting a drilling location (Stibolt and Lehman 1993; 
Waggoner 2002; Ballin et al. 2005). However, many 
practical problems include the selection of multiple drilling 
targets, and much of the previous work has relied on expert 
assessment rather than quantitative, model-based 
calculation of the accuracy of seismic data. Houck (2004) 
presented model-based calculations to quantify the 
improvement in seismic images resulting from a 
hypothetical improved streamer positioning system 
determined the economic value of improved data. Bickel et 
al (2006) quantify the reliability and value of seismic 
information in the context of a 3D land example. 
 
In this paper, we extend this previous work in Bayesian 
decision methods in several ways. First, all results utilize 
seismic waveforms computed using models based on well 
logs from the Gulf of Mexico, including measured levels of 
uncertainty in properties such as porosity or P-wave 
velocity. Furthermore, we implement a more complex 
model that includes uncertainty not only in porosity, but 
also in layer thickness so that we assess the ability of 
seismic data to infer more than one quantity important for 
reservoir management. Finally, we perform a sensitivity 
analysis by comparing results for several levels of 
uncertainty in reservoir properties and of errors in seismic 
data. This allows a quantification of the relative importance 
of these two sources of difficulty in utilizing seismic data. 
Below we first summarize the seismic modeling methods 
and describe the Bayesian decision theory and VOI 
methods, concluding with the sensitivity analysis.  
 
Seismic Model 

Synthetic seismograms from stochastic models provide the 
key results for studying the effects of uncertainty in 
reservoir properties and of seismic errors associated with 
possible changes in data acquisition methods. The primary 
goal is to quantify correlations between seismic amplitudes 
and properties such as porosity. There are three steps: 

1) Computing synthetic seismograms for a 
specified uncertainty in reservoir properties. 

2) Preparing multiple copies of the seismograms 
with different levels of seismic error. 

3) Measuring seismic amplitudes and correlating 
with porosity and reservoir thickness. 

Step one was repeated for 1000 realizations of the reservoir 
model for each scenario. Receiver spacing and error models 
were designed to represent 3-D acquisition in a marine 
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environment. The result is a table of correlation values 
providing the input required for the Bayesian analysis.  

 
Figure 1: Well logs from an offshore Gulf of Mexico site, 
with arbitrary depth axis. 
 
Reservoir model 
Well logs from a Gulf of Mexico site guide the design of 
the earth model (Figure 1). The model included a 
homogeneous reservoir layer bounded above and below by 
two identical half spaces. Velocities in the half spaces 
approximate the measured values near the shallower target 
in Figure 1 (Vp=2750 m/s and Vs=1.250 m/s; density ρ=2.3 
g/cm3), which also suggests a mean thickness of 20 m. 
 
The porosity log has an average and standard deviation of 
30.7% and 2.4% in the reservoirs. A porosity for each 
model was thus selected from the Gaussian probability 
distribution function (PDF) N(30.7,2.4). Linear regression 
of data from the reservoirs provided the following 
relationship for Vp: 
 Vp = 3007 – 2325φ + Ν(0, 90 ξ) (1) 
N(0, 90 ξ) is a random value chosen from a Gaussian PDF 
with 0 mean and standard deviation 90 ξ, and it models 
uncertainty in the Vp–φ relationship. The standard deviation 
of the differences between log velocities at a specific value 
of φ and the value computed using the first two terms on 
the right hand side was 90 m/s, and the parameter ξ thus 
controls the level of uncertainty in Vp compared to log data 
when generating models. Regression also related Vp and ρ, 
 ρ = 1.13 + 0.00035 Vp + Ν(0, 0.0735 ξ), (2) 
where the last term is a measure of uncertainty defined in 
the same way as for Vp. Measurements of the Vp/Vs ratio in 
the reservoir intervals showed a mean value 1.87, with 
standard deviation 0.05, and values for Vs were computed 
by selecting values from the Gaussian PDF N(1.87, 0.05).  
In summary, we first selected a value of φ from the 

Gaussian PDF, then a value for Vp with equation 1 and used 
that velocity to select density and Vs for each model. 

Figure 2: Synthetic seismograms for the model with mean 
property values (black) and 10 stochastic models (red).  
 
Synthetic Seismograms and Error Models 
Seismic waveform modeling used propagator matrices to 
compute the amplitude of the complete wavefield reflected 
from the reservoir layer, assuming an incident plane P-
wave  (e.g., Aki and Richards, 2002). This is the composite 
reflection coefficient (Gibson, 2005). Evaluating it at 
discrete frequencies and multiplying by the desired source 
spectrum S(ω) for a 30 Hz Ricker wavelet, followed by an 
inverse FFT, produces the reflected wave. This model does 
not include geometrical spreading, thus generating an ideal 
NMO-corrected gather. The receiver spacing was set to 
12.5 m, and the longest offset was 2300 m. 
 
We then apply a simple model of error that is spatially 
correlated along the streamer. Specifically, a weight value 
is chosen for each trace from a Gaussian PDF N(1,σ). The 
resulting discrete series is filtered so that it is spatially 
correlated with a correlation length of 50 m (Sato and 
Fehler, 1996). Each trace is multiplied by its weight, so that 
each has its amplitude scaled by values near 1, but with a 
specified standard deviation.  
 
Examples of synthetic seismograms are shown in Figure 2, 
which shows traces for the reference model with mean 
values chosen for all properties, and results for several 
realizations of the stochastic models. Variations in the 
reflection duration are caused by changes in thickness, 
while amplitude is also affected by porosity variations.  
 
Seismic Amplitude Measures 
The seismograms include a single reflection, so the RMS 
amplitude of each trace is a useful measure. Figure 3 shows 
correlations of RMS amplitude with porosity, comparing 
uncertainty in reservoir properties (Figure 3B) with seismic 
error (Figure 3A). The parameter ξ defining uncertainty in 
velocities and density is defined in Equations 1 and 2. For 
seismic error, the standard deviation of the error level σ  
was 0, 4, 8 or 12 in arbitrary amplitude units. The 
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maximum, 12, corresponds to a level of 10 dB down from 
the reflection amplitude. 

Figure 3: Correlations between amplitude and porosity with 
different model configurations. (A) Results for four levels 
of seismic error, and (B) results for four levels of 
uncertainty in properties (σ, ξ are defined in the text). 
 
Bayesian Uncertainty and Decision Analysis 

Consider an oil and gas company that is designing an infill 
drilling program. They identified N infill targets, but face a 
budget constraint such that they can only drill b wells. Let d 
= (d1,…,di,…dN) be an N-vector of drilling decisions, or a 
drilling program, where di = 1 if target i is to be drilled and 
0 otherwise. Without the benefit of seismic information the 
company first chooses its drilling program and then 
observes the reservoir properties, which relate to drilling 
results (e.g., dry hole). The drilling decision and the vector 
of reservoir properties ωi (e.g., porosity, thickness, water 
saturation) combine to generate profit (or loss) for the 
company, which we take to be the net present value (V) of 
the cash flow resulting from operation of the well. The 
value of this drilling program is the value without seismic 
information (VwoS). We represent this decision as  
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where E is the expectation operator taken with respect to 
f(ωi), which is the prior probability distribution of reservoir 
properties at location i. 
 
Now assume the company is able to acquire the seismic 
information matrix Θ = (θ1,…,θn), where θi is a vector of 
seismic signals for location i (e.g., amplitude for location i). 
The posterior distribution of the reservoir properties at 
location i, via Bayes’ Rule, is g(ωi|θi)=f(ωi) l(θi|ωi) / h(θi) 
where l(θi|ωi) is the likelihood function for observing 
seismic signal θi given ωi and h(θi) is a normalizing factor. 
The company now observes a seismic signal for each target 
location and designs the optimal drilling program, yielding 
the value with seismic information (VwS),  
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The inner expectation is taken with respect to g(ωi|θi). The 
value of seismic information (VoS) is the most the company 
should be willing to pay for seismic data, which, in this 
case, is equal to the value with seismic information less the 
value without seismic information: VoS = VwS – VwoS. In 
the current study, we assume both reservoir properties and 
seismic data are spatially uncorrelated and that the joint 
distribution f(θi,ωi) is multivariate normal, which greatly 
simplifies the Bayesian calculations. See Bickel et al 
(2006) for more detail. We assume NPV(φ,h,Sw) = 35.7 φ h 
(1-Sw) – 150, in millions of $US, which is a simplified 
version of the model used by Houck (2004), and wells cost 
$5 MM to drill. 
 
Example results 

Monte Carlo simulations were completed for layer 
thickness standard deviations of 0, 1, 2, 3 and 4 m, with 
1000 realizations for each case. Mean thickness was 20 m. 
The level of uncertainty in reservoir properties, ξ, took 
values of 0, 1/3, 2/3 and 1 (Equations 1, 2). Thus a total of 
20,000 sets of synthetic seismograms was computed. We 
also added three levels of seismic error, with σ=4, 8 and 12. 
Figure 4 shows how correlation between amplitude and 
porosity, and between amplitude and layer thickness 
changes with thickness standard deviation, σ and ξ.  
 
Figure 5 displays the value of seismic information for the 
small (σ = 4) and large (σ = 12) levels of seismic error 
assuming 12 targets, no uncertainty in reservoir thickness, 
and the medium level of seismic property uncertainty (ξ = 
2/3). If the well budget is 0, seismic information has no 
value. In addition, if the well budget constraint is not 
binding, seismic also has no value, because the wells are 
profitable in isolation and seismic information is unlikely to 
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change this. The value of seismic information peaks at a 
well budget of 6 and can be quite valuable since it helps 
better prioritize drilling. For example, when the budget is 6, 
seismic information is worth almost $36 million in the 
small error case and $32 million in the large error case.   

Figure 4: Correlations between (A) porosity and amplitude 
and (B) thickness and amplitude as a function of the 
standard deviation of reservoir layer thickness (σ and ξ 
measure error and uncertainty and are defined in the text).  

Figure 5: Value of seismic information for the medium 
level of reservoir property uncertainty (ξ = 2/3) with 12 
drilling targets and no uncertainty in reservoir thickness. 
 
Discussion and conclusions 
As one might expect, the value of seismic information is 
quite sensitive to uncertainty in the reservoir seismic 
properties and the level of seismic error. Table 1 details a 
sensitivity analysis of the value of seismic information 

when the well budget is equal to 6. For example, if the 
thickness has a standard deviation of 4 m and the 
uncertainty in the reservoir-seismic properties is low (ξ = 
1/3) then small error seismic is worth almost $87 million 
and large error seismic is worth almost $76 million. 
 
Within the context of our example, we can draw a few 
conclusions regarding the value of seismic information: 
 

• Seismic information can be quite valuable and 
increases in accuracy add value. 

• Increasing uncertainty in the reservoir-seismic 
property relationship (increasing ξ) or error 
(increasing σ) decreases seismic value. 

• The difference in value for small error and large error 
seismic decreases with increasing reservoir-seismic 
property uncertainty (increasing ξ). That is, 
improvements in seismic error are less valuable in 
more heterogeneous reservoirs. 

• Small increases in thickness uncertainty (e.g., between 
1 m and 2 m) decrease the value of seismic 
information as uncertainty in thickness confounds our 
ability to learn about porosity (see Figure 4). 
However, further increases in thickness uncertainty 
result in large values of seismic information because 
the correlation between seismic amplitude and 
thickness enables us to better select drilling locations. 

 

small medium large
h std dev Res Case σ = 4 σ = 8 σ = 12 small - large

0 m ξ = 1/3 51.2 46.5 41.2 10.0
ξ = 2/3 36.5 35.1 31.7 4.8
ξ = 1 26.4 25.0 24.0 2.4

1 m ξ = 1/3 32.0 28.1 26.3 5.8
ξ = 2/3 23.1 21.2 20.7 2.3
ξ = 1 17.2 16.5 16.4 0.8

2 m ξ = 1/3 14.5 14.2 10.7 3.8
ξ = 2/3 11.4 11.4 8.8 2.6
ξ = 1 8.8 9.0 7.1 1.8

3 m ξ = 1/3 52.8 50.4 44.1 8.7
ξ = 2/3 42.9 41.5 37.1 5.8
ξ = 1 34.1 33.4 29.9 4.2

4 m ξ = 1/3 86.9 83.7 75.8 11.1
ξ = 2/3 72.4 70.0 65.0 7.5
ξ = 1 58.3 57.6 52.6 5.7

Seismic Error Case

 
Table 1: Sensitivity of seismic information value ($ 
millions) to model uncertainties for a 6 well budget. 
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