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Abstract: Value of information (VOI) is one of the 
most important and interesting applications of decision 
analysis. Yet, despite much research, few general 
properties of VOI have been proved. Intuitive properties 
such as the value of information increasing as 
uncertainty is increased have been shown not to hold in 
general. In this paper, we consider VOI within the 
context of a stochastic knapsack problem. We show that 
within this setting, some interesting and sometimes 
intuitive properties do hold. 
 
1. Introduction: The Department of Homeland 
Security’s budget in FY 2007 was approximately $43 
billion [1], some of which supports the National 
Infrastructure Protection Plan (NIPP), whose goal is to 
“build a safer, more secure, and more resilient America 
by enhancing the protection of the Nation’s critical 
infrastructure and key resources (CI/KR)” [2]. The 
NIPP decision-making process is based on the risk-
management framework depicted in Figure 1. Its core is 
a risk-based resource-allocation phase (consisting of the 
steps Assess Risks and Prioritize) that is fundamentally 
a portfolio-management exercise or knapsack problem 
(KP)—even if not formalized as such. However, instead 
of the classic, deterministic knapsack problem, the 
policy makers in this situation face tremendous 
uncertainty regarding the probability of a significant 
event (e.g., terrorist attack, natural disaster, or other 
incident), the consequences of such an event, and the 
effectiveness of counter measures. 

 
Figure 1: National Infrastructure Protection Plan’s Risk 
Management Framework 

These questions can be analyzed through the 
application of value-of-information (VOI) techniques, 
which seek to understand how much better off a 
decision maker is by gathering additional information 

instead of acting on his/her current understanding. VOI 
techniques can play a valuable role in the policy process, 
as the Presidential/Congressional Commission on Risk 
Assessment and Risk Management [3] concluded:  
 

“In those cases where the quality of information is 
poor and the stakes in decision making are large, 
agencies should experiment with formal value-of-
information methods to determine whether it is 
most appropriate to act or wait for improved 
information. Continued research in the 
methodologic development and application of 
value-of-information techniques…should be 
encouraged.”  

 

Despite the ubiquity of knapsack and VOI problems, 
neither type is routinely treated as such. There are 
several reasons for this. First, most real-world decision 
problems include a high degree of uncertainty and 
project dependence, which are difficult to model 
efficiently. Second, VOI analyses require detailed 
probabilistic assessment and modeling, which can result 
in complex Bayesian calculations.  

 
1.1 Research Objective: To address the questions 

posed above and the lack of integration between 
knapsack and VOI problems, we are researching the 
properties of information value in the stochastic 
knapsack problem (SKP). Specifically, we have the 
following research objectives. 

Objective 1: Integrate VOI and knapsack 
methodologies to better understand the drivers of 
information value in resource-allocation settings. This 
includes the impact of changes in knapsack capacity, the 
number of items, uncertainty in item values, accuracy of 
the information-gathering program, and knapsack 
variety (e.g., 0-1, bounded, unbounded).  

Objective 2: Prove general statements or theorems 
regarding information value in knapsack settings (e.g., 
VOI monotonically increases with the number of items 
under consideration). 
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Objective  3:  Disseminate the tools and techniques 
required to effectively integrate VOI and knapsack 
problems, through journal publications, conferences, 
and education. 

In this paper, we investigate VOI properties with 
respect to parameters of SKP such as knapsack capacity, 
the number of items, prior uncertainty, and information 
system quality.  
 
2. Background:  
2.1 The Knapsack Problem: We consider the well-
known knapsack problem and several of its variants. We 
are given a set of N items, each with a known weight iw

and value iv . Let the vector of weights be 

1( , , )Nw w w  , where the prime denotes the 

transpose, and the vector of values be 1( , , )Nv v v  . 

We seek a vector of item counts 1( , , )Nx x x   whose 

total value V  v x  is maximal, but whose total weight 
W  w x  does not exceed some capacity C. Formally, 
the KP is 

 

max

,i

st C

x



 
 

x
v x

w x  (1) 

where   is an activity-set constraint that governs the 
number of each item the decision maker (DM) can 
include in the knapsack. 

Several variants of the KP, which differ in their 
activity-set constraint, are widely studied. For example, 
if   is the set of non-negative integers, then the KP is 
referred to as the unbounded knapsack problem. If ix  is 

instead restricted to be in {0,1}, then the 0-1 knapsack 
problem is obtained. If ix  is restricted to be in {0,1,…,

ib }, where ib  is the bound on item i, then we have the 

bounded knapsack problem. If the item value is equal to 
its weight, that is, i iv w , then we have the subset sum 

problem. The introduction of additional resource 
constraints or multiple knapsacks yields the 
multidimensional knapsack or the multiple knapsack 
problem, respectively. 

In many applications of the KP, the item values are 
not deterministic, but are instead random variables iv  

with known probability distributions  if v and joint 

distribution  f v . In this case, the deterministic value 

vector v  is replaced by the random vector v . This 
version of the KP is referred to as the SKP. In this case, 
maximization of the knapsack’s total value loses its 
meaning and the objective function in (1) is replaced by 
a preference-ordering criterion such as maximizing the 
probability that the knapsack’s value exceeds a 

particular target [4-6] or by a criterion involving first-
order stochastic dominance [7-9]. 

We assume the decision maker has a von Neumann-
Morgenstern utility function [10] defined over the 
knapsack’s total value. In this case, the objective 
function in (1) is replaced by 

max [ ( ( , ))]E u V
x

v x . 

This objective may be nonlinear, yielding a nonlinear 
knapsack problem (NLKP). If the decision maker’s 
utility function is linear in the knapsack’s total value 
(i.e., the DM is risk neutral), then the objective function 
in (1) can simply be replaced by v x , where 

1( , , )nv v v  and iv  is the mean value of item i. We 

do not consider non-von Neumann-Morgenstern utility 
functions or objectives such as coherent risk measures 
[11] because we find the expected utility axioms to be 
compelling from a normative perspective. Future 
research could relax this assumption. 

 
2.2 Value of Information: Assume that the value v of 
an item is a function of random variable s , with prior 
probability density f(s), and of the action x taken by a 
DM. Since s  is a random variable, so is the value of the 
item, which we denote v . In the absence of further 
information gathering, the DM chooses his/her optimal 
action by solving 

       * max , max ,s sx x
u E u v x s u v x s f s ds

 
     ,

 

where E is the expectation operator and *u is the 
maximum expected utility. 

Assuming the DM’s utility function has an inverse, 
his/her certain equivalent, CE, is the amount given with 
certainty that has the same expected utility as the 
optimal action, which can be found by solving 

 * 1 *v̂ u u . 

Suppose that for an amount b, the DM is able to 
purchase an information system Θ that yields a signal θ 
regarding the outcome of s . The DM’s expected utility 
for the system Θ is 

    * ( ) max , |
sx

u b E u v x s b g s ds  
    .

 

The most the DM should be willing to pay for Θ, the 
value of information (VOI), is the value b’ that solves 

 * *( )u b u   . (2) 

In the special case where the DM’s utility function 
exhibits constant absolute risk aversion (CARA), that is, 
it is either linear or exponential, 

 1 * 1 *( (0)) ( )VOI b u u u u 
   . (3) 
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Or, the value of the information system is equal to the 
certain equivalent of a costless information system less 
the certain equivalent without the system. 
 
2.3 Literature Review: In this section, we review the 
most relevant literature regarding the value of 
information in single-project (or -item) settings in 
particular and in resource allocation problems in general. 
 
Value of Information 
The VOI literature has focused on developing general 
results regarding information value in the context of a 
single project, rather than in the portfolio or knapsack 
setting discussed here. In addition, most results merely 
prove that few general conclusions can be drawn. We 
highlight the main results below.  

Flexibility: Hilton [12] proved there is no general 
monotonic relationship between the degree of action 
flexibility and information value. That is, adding 
(removing) actions to (from) the decision maker’s 
feasible set does not necessarily increase (decrease) 
information value.  

Risk Attitude: There is no general monotonic 
relationship between the degree of risk aversion and 
information value [12]. In the case of a binary 
accept/reject decision, Mehrez [13] proved that when 
the expected value of the accept alternative is less than 
or equal to zero, a risk-averse decision maker will never 
pay more for perfect information than will a risk-neutral 
decision maker. However, this relationship does not 
necessarily hold if the expected value of the accept 
alternative is positive.  

Wealth: There is no general monotonic relationship 
between decision-maker wealth and information value 
[14-16]. In addition, LaValle showed that information 
value is independent of wealth if and only if the 
decision maker’s utility function is linear or 
exponential. Where the decision maker’s utility function 
is logarithmic, Morris [17] showed that VOI is a linearly 
increasing function of wealth. 

Distributional Properties: Increasing uncertainty in 
the prior distribution does not necessarily lead to larger 
valuations of information [18]. Given a binary 
accept/reject decision and a risk-neutral decision maker, 
Mehrez and Stulman [19] demonstrated that the value of 
information is maximized when the expected value of 
the accept alternative is zero. Fatti [20] extended this 
result to the case of imperfect information.  

Accuracy of Information: The VOI is non-decreasing 
in information-system accuracy, as codified by the 
likelihood function [21]. Clemen and Winkler [22] have 
studied the effect of dependence between information 
sources and found that even modest degrees of 
correlation between information sources can 
significantly lower the VOI. 

Superadditivity/Subadditivity: The VOI is not additive 
across independent sources of uncertainty [23]. For 
example, the VOI on uncertainties X and Y together may 
be greater than (superadditive), less than (subadditive), 
or equal to the VOI on X plus the VOI on Y. However, 
for a two-act linear-loss decision with normal priors, 
Keisler [24] derived the conditions under which 
information value is superadditive. 

Relationship between Perfect and Imperfect 
Information: In a single-project setting, Bickel [25] 
highlighted the importance of information accuracy by 
demonstrating that the value of imperfect information 
for an information system with correlation coefficient r 
is generally much less than r times the value of perfect 
information (VOPI). In addition, he derived the 
conditions under which the VOI is equal to rä100% or 
r2ä100% of the VOPI. 

 

Resource Allocation 
The literature on resource allocation and capital 
budgeting is extensive, one strand being the knapsack 
problem itself [26; 27]. However, the literature 
regarding information value in the context of resource 
allocation or knapsack problems is relatively sparse. 

Mehrez and Stulman [28] analyzed examples where a 
company can gain perfect information on a subset of 
projects at a specified cost. If the company faces an 
information-gathering budget constraint rather than a 
project-funding capital constraint, it was found that the 
company should obtain perfect information on the 
projects where it has the highest value.  

Mehrez and Sethi [29] developed a hierarchical 
strategic-planning approach that integrates information 
gathering, project evaluation, and project funding. They 
addressed a company’s facing constraints on how much 
it can spend on information gathering and how much it 
can invest in projects, but they did not analyze the 
characteristics of information value in this setting. 

Keisler [30] analyzed the value of improved value 
estimates in the context of a constrained resource-
allocation problem. He investigated several funding 
strategies in an attempt to isolate the sources of value in 
portfolio management. In particular, he sought to 
understand the value created by improved estimates of 
project value versus disciplined project-ranking criteria. 
Although Keisler’s formulation was a 0-1 KP, with all 
projects having the same cost, he did not analyze the 
properties of information value in the knapsack setting. 

Bickel analyzed the value of seismic information in 
oil and gas drilling decisions, modeled as knapsack 
problems [31]. He noted that information value seems to 
be maximized when the decision maker faces a budget 
constraint that is binding but not “too” tight. However, 
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the behavior of information value as a function of 
knapsack parameters was not analyzed. 

In sum, the VOI literature is extensive and 
demonstrates that general conclusions regarding VOI 
are difficult to draw. However, the focus thus far has 
been decision situations involving binary decisions or 
decisions with only a few alternatives. In no case have 
general conclusions been investigated in resource 
allocation or knapsack problems. Furthermore, although 
the resource-allocation literature does include some 
discussion of the VOI in knapsack settings, the 
properties of information value have not been 
investigated.  

 
3. Value of Information in Stochastic Knapsack 
Problems: Suppose that before choosing the optimal 
knapsack, a decision maker can purchase an information 
system Θ that yields a vector 1( , , )N  θ   of signals 

regarding the value of each item iv . The value of the 

information system is, according to Equation (2), the b  
that solves 

|max [ ( ( | , ) )] max [ ( ( , ))]

.

i i

E u V b E u V

E st C st C

x x

   
   

      
          

v θ v
x x

θ

v θ x v x

w x w x

 

(4) 

The left-hand side of Equation (4) requires the 
solution of a knapsack problem for each possible 
information vector θ  and candidate value b, which 
could be computationally intensive. If the decision 
maker’s utility function exhibits CARA, then the value 
of the information system can be found by taking the 
difference between the certain equivalent with a free 
information system and the certain equivalent without 
the information system, as in Equation (3). This 
condition is satisfied when the DM is risk neutral, in 
which case he/she is only concerned with the posterior 
mean ( | )v θ , and the value of the information system is 

 

max( | ) max

i i

b E st C st C

x x

    
   

        
          

x x

θ

v θ x v x

w x w x . (5) 

 
4. The 0-1 SKP: The remainder of this paper focuses on 
the 0-1 SKP by letting {0,1}   in Equation (4). We 

further assume that there is a set of N items whose 
uncertain values iv  are i.i.d. random variables. All items 

are of equal weight. Without loss of generality, we 
assume this weight is equal to 1. The DM faces a 
resource capacity constraint equal to C. Assume that 
before choosing the optimal knapsack, the risk-neutral 
DM is able to obtain an unbiased i.i.d. information 

signal 
i  regarding the value of item i. Assume further 

that the true value of the item and the information signal 
are relevant.  

By Equation (5), the VOI is 

 

   

1 1

part I part II

max max

0,1 0,1

N N

i i i i i
i i

N N

i i

i i

v x v x

VOI E st x C st x C

x x


 

 

   
   
   
   

        
   
    
   
   

 

 

x x

θ

|

 

,      (6) 

where 
N denotes the number of items, 

iv  denotes the item value, 

i denotes the information signal, 

C denotes the capacity, 0 C N  , C = 1, 2, 3… 

 |i iv   denotes  i iE v v | , 

iv  denotes iEv . 

Part I is a “wait-and-see problem,” whose objective 
value must be at least as large as the objective value of 
Part II. Thus VOI is nonnegative. The model in the 
bracket of Part I is an SKP with cardinality constraint. 
This problem is also called the “selecting problem,” 
since the optimum objective value is the sum of the top 
C item values.  

Before proceeding, we describe the concept of order 
statistics and state a result that we will use later in the 
paper. 
 
Order Statistics 
Consider random variables X1, …, XN. The first 
(smallest) order statistic is 

(1: ) 1min( , , )N NX X X  . 

The last (largest) order statistic is  

( : ) 1max( , , )N N NX X X  . 

The rth order statistic is then denoted ( : )r NX  and defined 

as 

( : )r NX   rth smallest Xi, i = 1, 2, …, N. 

In this paper, we will make extensive use of the 
means of order statistics, which we define as  

 ( : ) ( : )r N r NEX x f x dx  , 

where  ( : )r Nf x  is the probability density function (pdf) 

of ( : )r NX . 
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To facilitate developments later in the paper, we 
provide two useful propositions regarding order 
statistics [32]. 
 
Proposition 1 (P1): If the pdf describing each random 
variable X1, …, XN is symmetric about x = 0, then 

( : ) ( 1: )r N N r NEX EX    . 

Proposition 2 (P2): For any arbitrary distribution with 
finite kth moment, 

       : 1: : 1r n r n r nn r EX rEX nEX    . 

P1 states that if the underlying pdfs are symmetric 
about zero, possibly after transformation, then their 
order statistics are also symmetric about zero. 

P2 provides an iterative formula to determine mean of 
higher order statistics from lower order ones. 

Since we have assumed that iv  and i are i.i.d and 

that all items have the same weight, we can write the 
optimum objective value of part I of Equation (6) as 

   : :
1 1

N N

r N r N
r N C r N C

E X E X 
     

   
 
  , 

where X denotes  v | . That is, the optimal objective 

value is simply the sum of the top r order statistic means. 

The optimum objective value of Part II of Equation (6) 
is simply Cv . So, 

 

  

 

:
1

:
1

:
1

,

N

r N
r N C

N

r N
r N C

N

r N
r N C

VOI EX Cv

E X v



  

  

  

 

 









                (7) 

where   denotes  E X v . 

 
4.1 VOI Sensitivity to Capacity: In this section, we 
investigate the relationship between VOI and the 
capacity constraint. We show that contrary to intuition, 
a tighter resource constraint (lower C) does not always 
imply that less should also be spent on information 
gathering. 

We now consider VOI to be a function of the 
knapsack capacity, VOI(C), and state two theorems. 
 
Theorem 1. For continuous random variables v  and  , 
if the pdf of  v |  is symmetric about v , the 

maximum of the function VOI(C) is obtained at 
/ 2C N     or / 2C N    .

*

 

                                                 
*     is the ceiling function, and     is the floor function. 

 
Proof.  v v |  is symmetrically distributed about 

0  , since the pdf of  v |
 
is symmetric about v . 

Thus, by P1, 

   : 1:r N N r N        .                          (8) 

By Equation (7), 

 :
1

.
N

r N
r N C

VOI 
  

   

If N is even, the optimum objective value is 

 max :
/ 2 1

N

r N
r N

VOI 
 

  , when / 2C N . 

If N is odd, then by Equation (8), 

 ( 1) / 2: 0N N   . 

When  1 / 2C N   or  1 / 2C N  the optimum 

objective value is 

 
 

 
 

max : :
1 /2 1 /2

.
N N

r N r N
r N r N

VOI  
   

   , 

Thus, the maximum of VOI(C) is obtained at 
/ 2C N     or / 2C N    .   �  

 
Theorem 2. For continuous random variables v  and  , 

if the pdf of  v |  is symmetric about v , VOI(C) is 

symmetric about / 2C N . 
 
Proof. Since, by P1, 

   : 1:r N N r N     , 

     : :
1 1

( )
N N

r N r N
r N C r C

VOI C VOI N C 
    

     . 

So,  ( )VOI C VOI N C  .                                      �  

 
Theorems 1 and 2 reveal that VOI as a function of C 

reaches a maximum when the capacity constraint is 
equal to one-half of the number of items. The practical 
implication is that VOI may increase as the capacity 
constraint tightens, meaning that we should spend more 
resources to understand the item values. However, if the 
capacity constraint tightens beyond a threshold, then 
VOI may decrease. 

 
4.2 VOI Sensitivity to the Number of Items: In this 
section, we investigate the relationship between VOI 
and the number of items under consideration in SKP. 
Intuitively, the greater the number of items that may be 
included in the KP, the greater the VOI.  
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We now focus on the maximum VOI as a function of 
the number of items n, which we represent by 

 max ,VOI n  and state the following theorem. 

 
Theorem 3. For continuous random variables v  and  , 
if the pdf of ( )v |  is symmetric about v , the function 

 maxVOI n  is nondecreasing in n. 

 
Proof. We know  

 
 

max :
1 /2

( )
n

r n
r n

VOI n 
   

  , 

and want to show 

 
 

 
 

1

: 1 :
2 / 2 1 / 2

n n

r n r n
r n r n

 



         

  , 

where   denotes  E v v | . We prove this by 

induction. 
 
By Equation (7) when n = 1,    2:2 1:1  . Assume that 

the inequality holds for n = k, where k is even. We then 
have 

       

     

1: 12 /2: 1 2 /2 1: 1

/2: /2 1: :

...

... .

k kk k k k

k k k k k k

  

  
     



   

    

.
Now, when n = k+1, we have 

         

       

  

1: 2 2: 2 1: 1

: 2 1: 2 : 1

22 / 2: 2 1: 2
2

1 2 ,

2 2 ,

2
1

2 2

k k k k k k

k k k k k k

kk k k

k k

k k

k k
k

  

  

 

     

   

     
 

    

   

    

         
   

 
1: 1

2

2 .k
k

   
 

(9) 

Summing all the terms for each side of Equation (9) 
yields 

     

2 1

: 1 : / 2 1: 2
/ 2 1 / 2 1

2 / 2

1 1

k k

r n r n k k
r k r k

k k

k k
  

 

  
   


 

   . 

Since  / 2 1: 2 0k k    , 

   

2 1

: 2 : 1
/ 2 1 / 2 1

k k

r k r k
r k r k

 
 

 
   

  . 

If k is odd, we can show it in the same way. Thus, 

 
 

 
 

1

: 1 :
2 / 2 1 / 2

n n

r n r n
r n r n

 



         

  .  �  

Thus, considering more items strictly increases VOI. 
Unfortunately, as shown in Appendix,  maxVOI n  may 

not be linear. 
 

4.3 VOI Sensitivity to the Degree of Prior 
Uncertainty: In this section, we investigate the 
relationship between VOI and the degree of prior 
uncertainty regarding item values. We take the degree 
of uncertainty to be measured by the standard deviation 
of the item values. Intuitively, greater uncertainty 
should increase VOI. However, as has been shown in 
the case of single projects, this may be incorrect.  

We further restrict the conditional expectation  v |  

to be a linear function of the standard deviation of the 
item values, such that     vv m t   | . This 

property would hold for jointly normal item values and 
signals, for example. Since VOI(C) is symmetric, we 
focus on maximum VOI, which occurs at / 2C N    . 

We now state a somewhat surprising theorem regarding 
prior uncertainty. 

 
Theorem 4. For continuous random variables v  and  , 
if the pdf of  v |  is symmetric about v , and the 

conditional expectation  v |  is a linear function of 

the standard deviation v  of v , the function ( )vVOI   is 

linearly increasing. 
 
Proof. Since     vv m t   | ,  v v | is also a 

linear function of v , say     vv v m t     | . 

     

   
  

: :
1 1

:
1

:
1

( )

/ 2

N N

v r N r N
r N C r N C

N

v r N
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v r N
r N C

VOI E v v

Em t

Em N t

  

 

 

     

  

  

  

 

    

 





|

 

Thus, the ( )vVOI   is linearly increasing with respect to 

prior uncertainty regarding item values.  �  
 

Therefore, as our prior uncertainty increases, we 
should spend (strictly) more on information gathering. 
Although obtained under rather strict assumptions, the 
result is surprising given the negative results stated in 
§3. 
 
4.4 VOI Sensitivity to Information System Quality: 
In this section, we investigate the sensitivity of VOI to 
the quality of the information system, which we take to 
be measured by the correlation coefficient ρ. We 
maintain our assumption that the item-value conditional 
means are a linear function of the correlation coefficient. 
A correlation coefficient of 1 would represent perfect 
information.  
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We further restrict that the conditional expectation 
( )v |  is a linear function of the correlation between 

the item values and signals, say ( ) ( )v m t    | , 

where m  is a function of random variable   and t   is 
a scalar, without loss of generality. We now state our 
final theorem. 
 
Theorem 5. For continuous random variables v  and  , 
if the pdf of  v |  is symmetric about v , and the 

conditional expectation  v |  is a linear function of 

the correlation   between v  and  , the function 

( )VOI   is linearly increasing. 

 
Proof. This proof is similar to that of Theorem 4. 
Because    v m t    | ,  v v | is also a 

linear function of v , say    v v m t     | . 

     

   
  
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1 1

:
1

:
1
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Em t

Em N t
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 

     

  

  

  

 

    

 





|

. 

Thus, ( )VOI   is linearly increasing with respect to 

information system quality.   �  
 
5. Examples: In this section, we demonstrate the 
properties proved in the previous sections, by applying 
Monte Carlo simulation with 1000 iterations. After each 
iteration, we solve the first part of Equation (6) using a 
dynamic programming algorithm [27].  

To match the assumptions made in §4, we consider a 
0-1 SKP whose uncertain values vi and signals θi 

are 
i.i.d and jointly normal. The weight of each item is 
assumed to equal 1. These assumptions satisfy those 
made in §4. For example, under joint normality, the 
conditional value of the item values is 

   vv v



   


  | , 

whose pdf is symmetric about v .  

We consider the specific case of 10 items whose 
means and standard deviations are 10 and 2.5, 
respectively.  

 
5.1 Simulation-VOI Sensitivity to Capacity: Two 
cases are simulated. In the first, the coefficient between 
item values and signals is 0.8. In the second, it is 0.2. 

The simulation results are displayed in Figure 1. As 
proved in Theorems 1 and 2, VOI(C) is maximized at 
and symmetric about C = 5. 

 
Figure 2: Simulation results of VOI as a function of 
capacity 
 
5.2 Simulation-VOI Sensitivity to the Number of 
Items: We simulate two cases, with correlation 
coefficients of 0.2 and 0.8, respectively. As in Theorem 
3, the capacity is fixed at / 2C N    . The simulation 

results appear in Figure 3 and demonstrate that 

max ( )VOI n  is nondecreasing but not linear. 

 

 
Figure 3: Simulation results of VOI as a function of 
number of items 
 
5.3 Simulation-VOI Sensitivity to the Degree of Prior 
Uncertainty: In this case, we simulate max ( )vVOI   for 

standard deviations ranging from 0 to 10. As before, we 
consider correlation coefficients of 0.2 and 0.8. The 
results are displayed in Figure 4. 
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Figure 4: Simulation results of VOI as a function of 
prior uncertainty 

The simulation results demonstrate that max ( )vVOI   

is increasing linearly with respect to prior uncertainty of 
item values and that VOI is equal to 0 when the standard 
deviation is 0.  
 

5.4 Simulation-Sensitivity to Information System 
Quality:  In this section, we simulate VOI as a function 
of the correlation coefficient. The results are displayed 
in Figure 5. 

 
Figure 5: Simulation results of VOI as a function of 
information-system quality 
 

As proved in Theorem 5, VOI is linearly increasing in 
the correlation coefficient.  

 
6. Conclusions and Future Work: This research has 
explored the properties of information value within the 
context of resource-allocation decisions made under 
uncertainty. We have also shown that when resources 
are constrained, it may be better to spend more on 
information gathering—tighter budget constraints in one 
area should be met with greater budgets in another. We 
have also proved that some VOI properties that do not 
hold in the case of single projects do hold in the 

knapsack setting. For example, we have demonstrated 
that VOI is strictly increasing in the prior uncertainty.  

We are still investigating several additional problems 
within the context of the 0-1 SKP. These include the 
properties of VOI as a function of the decision maker’s 
risk attitude, the impact of dependence between item 
values, dependence between signals, and the 
relationship between perfect and imperfect information. 

Once these investigations are completed, we will 
attempt to extend our results to unbounded, bounded, 
multidimensional, and multiple SKPs.  
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8. Appendix:  

We demonstrate that VOI may not be a linearly 
increasing function of the number of items.  

We assume item values iv  are i.i.d. normal random 

variables. The true value of the item and the information 
signal i  are jointly normally distributed with a 

correlation  .  v |  is  vv



  


  , whose pdf 

is symmetric about 10v   .  
 

When n = 1,  

 max 1 0nVOI  . 

When n = 2, 

   max 2:22n v vVOI Ev E E
 

 
 

 
   . 

When n = 3, 

      max 2:3 3:33 2 2n v vVOI Ev E E E
 

 
  

 
    . 

Let i  denote    max max1n nVOI i VOI i  . 

 1 2:2
v vEv E E

 

 
 

 
    , 

      2 2:3 3:3 2:2
v vEv E E E E

 

 
   

 
      . 

If the function  max
nVOI n  is linear, then 1 2   . Thus, 

     2:2 2:3 3:3 2:2E E E E       .            (10) 

By Proposition 2,  

     2:3 3:3 2:22 3E E E    .              (11) 

Substituting Equation (10) into Equation (11) yields 

   3:3 2:2E E  , which is a contradiction. Thus, the 

function  max
nVOI n  may not be linear. 
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