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ABSTRACT Given limited funding, should we invest in infrastructure to speed
evacuation in an emergency, or in forecasting technology to better predict the
timing and intensity of the event? For example, should we build additional evac-
uation routes along the Gulf Coast of the United States to speed hurricane evac-
uations or should we improve our ability to forecast the path and intensity of an
approaching storm?

In this research, we use dynamic programming to model the evacuation and
information-gathering decision of an official responsible for public safety. We as-
sume that at each stage, an evacuation can be ordered that will take several
stages to complete, or a decision can be made to wait and gather additional in-
formation regarding the approaching storm. Early evacuation mitigates loss, but
may ultimately not have been necessary. On the other hand, waiting too long to
evacuate could produce tragic consequences.

By investing in infrastructure to speed the evacuation process, we are able to
wait longer and thereby act with greater information.

Keywords: dynamic programming, investment decision, hurricane forecast,
evacuation speed, value of information

1 Introduction

Suppose that a tropical depression has formed in the Gulf of Mexico.
Whether this depression will develop into a hurricane and where (if) it
will make landfall are uncertain. To reduce this uncertainty, meteorologists
gather data about the storm and produce track and intensity forecasts.
Meanwhile, along the Gulf Coast, communities ponder whether the proba-
bility of a storm is high enough to warrant action, such as the fortification
of buildings, taking shelter, or even full-scale evacuation.

Many parties, including the weather service, government or city officials,
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and private individuals, may be concerned about this situation. However,
few of them can make the decision to mitigate the loss in the vulnerable
area.

The emergency-response command structure differs in every state. By
law, governors in most states have the ultimate authority to order evacua-
tions even though some governors delegate this authority to local officials
such as mayors, county judges, or county presidents (Wolshon et al. 2005).
The identity of the individual is not important for our research. There-
fore, we simply assume that some governmental body issues an evacuation
request, which need not be mandatory.

Under perfect forecasting, individuals would immediately know whether
the storm warrants action. Given ample warning, the ability to take these
actions quickly is not as important as it is in the real world of imperfect
forecasts, where the storm’s path and intensity may not be clear until the
last few hours before landfall. Most storms form far enough away, roughly
five days before landfall (NOAA 2006, National Hurricane Center 2006),
that we could take advantage of a perfect forecast. Thus, improved fore-
casting accuracy could save lives, mitigate damage, and avoid false alarms.

On the other hand, if we had the ability of instantaneous mitigation or
evacuation, the accuracy of the forecast would not be important because
we could always take action ”at the last minute.” Such an infrastructure
system would be akin to having perfect information on the storm, since we
are always able to act once the storm’s path and intensity become clear.

Thus, we face a tradeoff. We can invest in improving our forecasting
ability (e.g., improved models, more real-time data) to provide accurate
warnings earlier or invest in mitigation and infrastructure (roads, shelters,
etc.) that can be used quickly, perhaps in the final hours before the storm
arrives. Which of these areas is the better investment? What is the opti-
mal mix of these two alternatives? The interplay between the emergency
response system (ERS) and the emergency forecasting system (EFS) is
depicted in Figure 1. Both are affected by natural (e.g., a hurricane) or
manmade (e.g., terrorist attack) events. The ERS and EFS are coupled at
many different levels. However, we are primarily focused on their coupling
through investment. What do improvements to one system imply about
the value of investments in the other system?

In this paper, we develop a dynamic programming model to represent
a dynamic multi-stage decision (e.g., evacuation) in the face of oncoming
risk. We also provide preliminary results from the dynamic programming
regarding the value of increased evacuation speed. The value of improved
forecasting will be presented elsewhere.
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FIGURE 1. Risk response and forecasting system

2 Literature Review

This work has connections to several areas including dynamic program-
ming, dynamic decision-making, Bayesian updating, and cost-loss ratio.
Among these, dynamic programming is the primary tool used to address
decision problems that evolve over time."

If the decision situation is not only a selection among the alternatives
but also a determination of timing, a static decision model is inadequate.
McCardle (1985) helped motivate our research by developing a dynamic
programming model to analyze an action-timing decision problem regard-
ing technology adoption and information gathering. The decision maker
(DM) is a firm that considers the adoption of an innovation and wants to
reduce the level of uncertainty associated with its profitability by sequen-
tially gathering information, updating its prior estimate of profitability in
a Bayesian manner. This model was formulated in a different setting from
ours, but the structure of the decision problem is analogous.

Ahn and Kim (1998) considered the problem of deciding the best action
time when observations are made sequentially. To handle this type of prob-
lem, they formulated an action-timing problem with sequential Bayesian
revision and derived a decision rule based on the observation or infor-
mation. They performed a simulation to assess the value of the Bayesian
strategy. In their generic problem, the decision-making process starts with
observation xp (k = 1) being generated from an exponential distribu-
tion. Using the observation xj , prior belief on a state is revised to get the
posterior belief on the state. Then d*(n), the optimal strategy with n re-

IFor an introduction to dynamic programming, see Howard (1966).
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maining decision stages, is calculated. If the value is greater than or equal
to d*(n) at decision stage n, the DM accepts the observed value z; and
the decision-making process ends. If xy is less than d*(n) at decision stage
n, the DM rejects it for another observation. Their work is relevant to our
problem even though they provide a decision rule based on the information
or observation at each stage, rather than on the revised belief on the state
of an event. In addition, they consider only two alternatives: ”accept” the
current observation or ”reject” for another observation.

The concept of cost-loss ratio is one of the most important for this re-
search.? Here, ”cost” means that of preventive action and ”loss” means the
loss or damage from an adverse event. Many people analyze the hostile-
weather or natural-disaster problem using this concept. Zhu et al. (2002)
used an expense matrix that includes two kinds of loss. They assumed that
loss is comprised of protectable loss (Lp ) and unprotectable loss ( Ly ).
Their expense matrix shows that the expense is C' + Ly if the action is
taken and the event occurs, C' if the action is taken but the event does
not occur, Lp + Ly if the action is not taken but the event does occur,
or 0 if the action is not taken and the event does not occur. Thus, their
decision is to take action if P > C/Lp, a clear and simple decision rule.
They assumed that there was at most one relevant decision timing. They
also assumed that cost of preventive action and loss from the hostile event
do not depend on the timing of the decision or action. If the cost and the
loss depend on the timing, as in hurricane evacuation, the simple cost-loss
ratio policy no longer works. However, even in the variable cost and loss
structure, it is still useful to recognize that the decision policy depends on
the protectable part of loss rather than the unprotectable part.

Einstein and Sousa (2007) compared the warning systems for natural
threats like tsunami, flood, hurricane, and pandemic. They also suggested a
tool to evaluate the warning systems as a decision tree. They compared the
maximum expected values of the alternatives ”perfect/imperfect warning
device,” ”take active/passive measure,” and "no action,” based on the cost
of the measure, effectiveness of the measure, and probability of threat.

Wolson et al. (2005) recognized that a critical issue in hurricane evac-
uations is timing. They showed that the time required to evacuate is es-
timated from a combination of clearance times and the pre-landfall haz-
ard time. Clearance time is the time required to configure all traffic con-
trol elements on the evacuation routes, initiate the evacuation, and clear
the routes of vehicles once deteriorating conditions warrant its end. Pre-
landfall hazard time is the time during which hazardous conditions exist
prior to actual hurricane landfall. Due to these factors, preplanned evac-
uation times vary widely by location. They estimated the ideal minimum
advanced-notification times that some states prefer to have before issuing

2For more details about cost-loss ratio, see Thompson (1952).



the evacuation, depending on the hurricane category.

Katz and Murphy (1990) showed the relationship between the scientific
quality and economic value of imperfect weather forecasts in a multistage
decision-making model. They considered a prototype multistage decision-
making model involving two possible actions and two possible stages of
weather. They defined a quality parameter ¢ that measures the relative
distance of p; between py and 1, making 0 < ¢ < 1, with ¢ = 0 for
climatological information and ¢ = 1 for perfect information. Here, p;
is the conditional probability of adverse weather given a forecast of such
weather and py is the long-run relative frequency of adverse weather. They
also defined a relative economic value Vg /L, where the value of imperfect
weather forecast Vp is defined as expected expense associated with cli-
matological information minus expected expense associated with imperfect
weather forecasts and L is loss. They analyzed the relative economic value
as a function of quality q of imperfect weather forecasts for the multistage
cost-loss ratio model with a discount factor. The results showed that the
economic value is zero for forecasts whose quality falls below a threshold.
Above this threshold, economic value rises at an increasing rate as forecast
quality in-creases toward that of perfect information. The results imply
that the current long-range forecasts, which are of relatively low quality,
are apparently ignored by many DMs due to the existence of a quality
threshold.

Buizza (2001) discussed the accuracy and the potential economic value
of categorical and probabilistic forecasts of discrete events. Accuracy is as-
sessed using known measures of forecast accuracy, and potential economic
value is measured by a weighted difference between the probability of true
detection and the probability of false detection, with the weights a func-
tion of the cost-loss ratio, the observed ratio, and the observed relative
frequency of the event. The result shows that forecast skill cannot be de-
fined objectively but depends on the measure used to assess it. In other
words, forecasts judged to be skillful according to one measure can show
no skill according to another measure.

Considine et al. (2004) estimated the value of both existing and more
accurate hurricane forecast information for resource producers in the Gulf
of Mexico. A probabilistic cost-loss model was used to estimate the in-
cremental value of hurricane forecast information for oil and gas leases in
the Gulf of Mexico over the past two decades. Detailed computations of
hurricane forecasting accuracy were performed using records from the Na-
tional Hurricane Center and Marine Forecast/Advisory from 1980 to 2000.
Evacuation costs and potential losses were estimated using data from the
Minerals Management Service and oil company drilling records. Estimates
indicated that the value of existing 48-hour hurricane forecast information
to oil and gas producers averaged roughly $8 million per year during the
1990s, which substantially exceeds the operating budget of the National
Hurricane Center. From an industry perspective, however, these values are
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a small fraction of drilling and production costs. Moreover, although re-
cent hurricane-forecast accuracy is improving, it has not been sufficient to
create significant value to this industry. On the other hand, forecast value
dramatically increases with improvement in accuracy, rising by more than
$15 million per year with a 50% improvement in 48-hour forecast accuracy.

Regnier and Harr (2006) used a discrete Markov model of hurricane travel
to model the decision to prepare for an oncoming hurricane. Their model
was derived from historical tropical cyclone tracks and was combined with
the dynamic decision model to estimate the additional value that can be
extracted from existing forecasts by anticipating updated forecasts. They
used variable hurricane-preparation cost, which is defined as a fraction
of the maximum loss, increasing linearly or exponentially after a critical
lead time. They used a discrete Markov model to represent the path of a
hurricane and the strike probability for multi-period decision making with
respect to a sequence of forecasts with improving accuracy for a single
event, but they didn’t use Bayesian revision. Simulation was used to com-
pare the expense in different cases. Their results indicate that a DM who
has the flexibility to wait for updated hurricane forecasts can extract a
substantial value from adopting a dynamic decision approach.

3 The Model

While there are many conceivable risks and mitigating actions, we will use
hurricane to represent a risk or other hazard, and evacuation to represent
the protective action or countermeasure. Taking action immediately upon
receiving information of an approaching hurricane can mitigate the damage
or loss, but at some cost. If action is taken and the hazard strikes, then
this cost was not ”wasted.” If, however, the event does not occur, then the
preventive expenditure was on a false alarm.

Fortunately, we have another choice. We can defer the decision and collect
more in-formation about the upcoming event, in order to reduce the likeli-
hood of a wrong decision. However, information gathering can be costly and
any delay in taking action could result in greater loss. Therefore, we must
carefully weigh the benefit of gathering additional information against its
potential cost.

We use dynamic programming to model this problem structure. Let
Vj(p;) be the anticipated expense from following an optimal policy at stage
j, when the current probability of hurricane strike is p;. We assume ei-
ther that the detected hurricane will hit the vulnerable area at stage N
or that it will not. This assumption will be relaxed in future research. p;
is the stage j estimate of the probability that the hurricane will strike,
which is estimated using the information collected up to stage j. L; is the
loss if evacuation is begun at stage j; therefore Ly represents the loss if



evacuation is not completed before the hurricane strikes.

If the DM ignores the oncoming hurricane without further information
gathering, the loss will be Ly with probability p;. We refer to this as
the "Ignore” alternative. If the DM takes action (”Act”) at stage j, there
will be an evacuation cost C; and loss L; with probability p;. If the
DM defers the decision ("Wait”) and collects additional information at
cost 7y, the anticipated expense from the deferred decision depends on the
additional information. This leads to the following dynamic programming
functional equation:

V;(p;) = min{p; Ln,Cj 4+ pj - Lj,v+ Vjipa(p;)}, for pj€(0,1) (3.1)

Vit(pj) = (1= pj)Vita (

(a+ﬁ+j)pj>+ o ((a+6+j)pj+1>
atB+j+1) TP T a1
(3.2)

Vn(pN-1) =pN-1Ln (3.3)
Vj+1(pj) is the expected value from following an optimal policy at stage
j+1, given the current posterior probability p; at stage j. Vn(pn—1) is
the terminal value of V;41(p;). This is equivalent to the value of decision
"Ignore” at stage N —1 because the DM’s only choice at the terminal stage
is to face the risk if he or she didn’t take action previously.

We assume that the information structure is represented by the conjugate
pair Beta-Bernoulli.* According to this information structure, the DM’s
prior distribution on the probability of hurricane strike is a Beta with
parameters («,3) and the information comes from a Bernoulli distribution
with parameter p* . We denote the information at stage j as binary random
variable X, where X; =1 is a forecast that the hurricane will strike and
X; = 0 is a miss forecast. The probability of receiving information that
the hurricane will strike is P(X; = 1) = p* = 1 — P(X; = 0). The prior
probability of a strike py is the mean of this distribution, which is equal
to af(a+pf).

Upon the arrival of information, the DM updates his/her prior distri-
bution in the standard Bayesian fashion. Under the Beta («, 3) prior and
Bernoulli information, the posterior distribution of P, given the j observed
pieces of information X1, Xo,...,X;, is Beta (a+S;,5+j —S;), where
S; = X1,Xo,...,X;. This distribution has a mean of (a+S5;)/(a+38+]).
As the X;’s are either 0 or 1, S; is just the number of positive signals,

3The range of p; does not include 0 or 1, since we assume that the prior probability
is between 0 and 1 and posterior probability never reaches 0 or 1.
4For background about conjugate pairs, see Raiffa and Schlaifer (1961).
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which mean ”Hurricane will hit,” from the first j pieces of information,
and j —S5; is the number of negative signals, which mean ”Hurricane will
miss.” Here, the range of S; is 0 to j. This model structure is clearly lim-
ited because hurricane forecasts are richer than ”hit” or ”miss.” We plan
to relax this assumption in future work.

Since we assume that the DM can collect only one piece of information
at each stage, we consider the DM to be at stage 7 when he or she has
collected exactly j pieces of information. If the DM is at stage j with prior
probability p;, then with probability 1—p; the next piece of information is
a 0 (miss) and the point estimate decreases to (a+06+7)p;/(a+B8+j+1);
while with probability p;, the next piece of information is a 1 (hit) and
the point estimate increases to ((a + 5+ j)p; +1)/(a+5+j+1).

We suppose that the expense for the DM is the summation of evacuation
cost C; and loss L; and that it depends on the timing of evacuation. The
expense is summarized in the following table.

Table 1. Expense of evacuation decision

Hit Miss
Evacuate at j Ci+L; Cj
Do not evacuate Ly 0

L; <Ly forall j <N

The table shows that the loss from the hurricane depends on when the
evacuation decision is made and that the evacuation cost does not depend
on whether the hurricane hits the area. The loss from acting is less than
from waiting (j < N), because the earlier the DM starts evacuation, the
more will be protected and the less will be lost. L; can be interpreted as a
measure that is proportional to the percentage of population and property
still remain-ing in the vulnerable area when the hurricane strikes.

4 Analysis

4.1 Loss profiles

Llustration: Linear Loss
For convenience, we assume a risk-neutral DM. Let’s start with a simple
linear loss structure described by the following equations.

N
Lj=Ly-— T]LN forj <N (4.1)

L; is the loss from hurricane if the evacuation decision is made at stage j
and the hurricane strikes eventually. L; can be interpreted as proportional
to the percentage of population and property still remaining in the vul-
nerable area when the hurricane strikes, if evacuation is begun at stage j.



So, Ly — L; can be interpreted as the protectable part of loss by starting
evacuation at stage j.

Assume the cost of evacuation C; is constant at 1 and does not depend
on the decision timing. Loss increases linearly from 0 to 5, depending on
the timing of evacuation decision. Stage 0 is the only timing of evacuation
decision that can prevent all loss from the hurricane because Ly = 0 and
Lj >0 for all j >0 in Equation (4.1). The protectable part of the loss is
strictly decreasing in j. Therefore, the later the evacuation decision, the
greater the loss in the event of a hit. We assume ~ is 0.001 and the prior
probability on the hurricane strike is Beta(0.2, 1).

In this example, we assume the final stage is 30, which means the DM
can gather up to 30 pieces of information before the hurricane either hits
or misses. According to the historical hurricane tracks (NOAA 2006) and
tropical cyclone reports (National Hurricane Center 2006), initial detection
of a hurricane is made roughly 3 to 7 days before its landfall as a tropical
depression, depending on the location of storm creation and its direction of
movement. Since the forecast is updated every 6 hours, lead time of initial
forecast of a hurricane is roughly 20 to 30 stages.

The calculation of the dynamic programming starts from the final stage.
Because the DM doesn’t have a choice at stage 30, Vag(pag) is calcu-
lated as min{pag L3, Cog + pag - Lag,y + Vpag}. If pa8 is 0.863, pog is
(a4 +28)pas/(a+5+29) = (0.241+28)0.863/(0.2+1+429) = 0.834 or
((a+B+28)pag +1)/(a+B+29) = ((0.2+1+28)0.863+1)/(0.2+1+29) =
0.868. Then

V20(0.834) = min{0.834 x 5,1 + 0.834 x 4.83,0.001 + 0.834 x 5}
= min{4.170,5.028,4.171}
= 4.170

V9(0.868) = min{0.868 x 5,1 + 0.868 x 4.83,0.001 + 0.868 x 5}
= min{4.340,5.192,4.341}
= 4.340

This means that if the posterior probability of hurricane strike estimated
at stage 29 is 0.834 or 0.868, the optimal choice at this stage is ”Ignore.”
This result is possible because the percentage of loss that can be saved by
evacuation is very little compared to the cost of evacuation.

At stage 28, Vag(pag) is calculated as min{paogLsg, Cas + pas - Log, v +
Vag (]928)} .

Vas(0.863) = min{0.863 x 5,1 + 0.863 x 4.83,0.001 + V9(0.863)}

= min{4.315,5.030,0.001 + V(0.863)}

= min{4.315,5.030, 0.001+0.137 x V29 (0.834)+0.863 x V29 (0.868) }
min{4.315, 5.030,0.001 + 0.137 x 4.170 + 0.863 x 4.340}
= 4.315
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Similarly, we can calculate all the values of V;(p;), and finally we get
Vo(po) = V0(0167) =0.485.

Figure 2 shows the ranges of p; with which the optimal decision is ” Act,”
"Ignore,” or "Wait.” At each stage, the optimal decision can differ accord-
ing to the value of p;. The upper threshold p; and the lower threshold p;
define the boundaries between which ”Wait” is optimal choice. The thresh-
olds are defined as follows:

p; = min{p, : V;(p;) = C; +p;L;} (4.2)

p, = min{p; : V;(p;) = p;Ln} (4.3)

The thresholds imply that the optimal decision is ”Act” if the value
of p; is greater than or equal to p; , "Ignore” if the value of p; is less
than or equal to P and ”"Wait” if the value of p; is between D and p;-
As the cumulative information increases, the uncertainty about whether
the hurricane will hit the area decreases and gathering more information
becomes less beneficial. Therefore, the thresholds get closer and meet at
the point where the DM stops collecting additional information and makes
a decision of "Act” or "Ignore.”
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FIGURE 2. Policy region for linear loss profile
Figure 2 shows all possible posterior probabilities of hurricane strike at

each stage. Since this information structure is discrete and the number of
information signals is limited at each stage, the number of possible posterior
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probabilities is also limited. For stage j, there are j 4 1 possible posterior
probabilities. For this diagram, « is 0.2, 8 is 1, and -y is 0.001. Therefore,
the prior probability of hurricane strike is a/(a + ) =0.167.

In Equation (3.1), if the value of ~ is increased, ”Wait” becomes less
attractive. If the value of ~ is decreased, ”Wait” becomes more attractive
at the expense of "Ignore.” If the value of 7 is 0, ”Wait” and ”Ignore”
further diverge. In this case, ”Ignore” cannot be an optimal choice in early
stages but can become optimal when the final stage N is imminent but
hurricane strike is unlikely.

Since the expected expense of evacuation is C; +p;L; and the expected
expense of ignoring the hurricane is p;L;, define p’ = C;/(Ly — Lj) to
be the break-even point: C; + p’L; = p'Ly . Because the loss from the
hurricane changes at every stage, so does the break-even point. Since Ly —
L; can be interpreted as the protectable portion of the loss, the optimal
decision is based on the ratio of action cost to the protectable portion
of the loss if the DM ceases information gathering. Therefore, even if the
protectable portion of loss is constant while the evacuation cost increases,
the break-even point increases and the optimal choice could change from
7 Act” to "Ignore.” At stage 1, the break-even point is 1/(5-5/30) = 30/145
= 0.207. At stage 23, the break-even point is 1/(5-523/30) = 30/35 =
0.857. As the protectable portion of loss decreases over time, upper and
lower thresholds converge to the moving break-even point. From stages 23
to 29, however, there is no break-even point and ”Ignore” is the optimal
decision, as shown in Figure 2.

At stage 0, the prior probability of hurricane strike is 0.167 and the opti-
mal choice is ”Wait.” Depending on the information, the posterior proba-
bility of hurricane strike can be greater or less than 0.167 at stage 1. If the
DM moves on to stage 1 with a positive signal, the posterior probability
will increase to 0.55 and the optimal choice changes to ”Act” because the
DM is sure enough about the risk to justify action. If the DM is at an
early stage such as stage 5, the optimal decision depends on the value of
pj . After stage 12, ”Wait” can no longer be the optimal decision, that is,
additional information no longer has any effect.

Illustration: Exponential loss

To understand the effect of increasing evacuation speed, we consider ex-

ponential loss as shown in Equation (4.4).

etN _ otd

Lj :LN— LN fOT‘jSN (44)

erN —1
where p is the exponential growth rate.

The policy region in this exponential loss structure is shown in Figure 3.
In this case, Vo(po) = V5(0.167) = 0.444, which is lower than that of the
linear loss structure. Exponential loss implies shorter evacuation speeds.
Linear is a special case of exponential where p — 0, because
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etV — etd 0

b (15)
By LHopitalé rule,
etV —end . NewN — jet N —j
i N = N T = N (4.6)

In other words, linear loss is the special case of exponential loss where the
exponential growth rate is at the lowest level. Higher growth rate implies
faster evacuation, and Vj(po) values of linear and exponential loss show
that faster evacuation is more valuable.

1 =
........... -
0.9 1 T e ottt e
0.8 1 . et
2071 : P R R 4
3 : SERBREREERE
T0.6 1 P
o . < . T Y/
6-_05 A .....'.: V /A
3 . A : At s Lt aA .
5041 -
7] A a ’. ... "n
£03 1 :
c . -l.. : .
0.2 . et e g M e e ..
Wait* . | S RN (04 o] TR
0.1 Tl o el
0 . :':':-:-........:::: ......

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Stage j

FIGURE 3. Policy region for exponential loss profile

Figure 4 superimposes the policy regions of the two loss structures. It
shows that exponential loss structure, with its faster evacuation, allows
more time to collect information before making a decision.

4.2 Effect of evacuation speed

As discussed above, evacuation speed or efficiency has an important effect
on the optimal policy and the optimal value of the dynamic program. Evac-
uation speed can be represented as loss saving rate or loss increment rate,
and it is realized as the slope of loss structure. Since the change in evacu-
ation speed can be understood as the change in loss change rate, doubling
of slope of the loss curve implies doubling of evacuation speed.
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FIGURE 4. Policy region for linear (solid) and exponential (faint) loss profiles

In the exponential loss structure, evacuation speed increases over time
until the terminal stage. Change in evacuation speed does not change the
maximum loss, but it changes the slope of loss structure and the critical
point of loss. Slope changes as the evacuation speed changes, but loss at
the final stage is always Ly .

In Equation (4.4), the loss structure is rescaled so that the range of L;
is from 0 to Ly, irrespective of the value of p. Therefore, doubling of u
does not imply precise doubling of evacuation speed. Since we need to con-
trol the evacuation speed without rescaling, we introduce the parameter,
evacuation speed change ratio. In the exponential loss structure de-fined in

Equation (4.4), the slope at stage j is eﬁ\,{lue“j . The slope at stage j in
the loss structure with changed evacuation speed is rg eﬁ}‘ilue"j , where

rs is the evacuation speed change ratio. Doubling of rg implies doubling
of evacuation speed. Even with the change of rg, terminal value of L; does
not change. Instead, its value for earlier stages changes. Since the value of
L; cannot be below 0, the exponential loss function with the evacuation
speed change ratio rg can be defined as follows:

e — e } (4.7)

I/‘7 = Imax {O,LN - TSWLN

In the changed exponential loss function, the critical point gets closer to
the final stage with higher evacuation speed and the new critical point

N
is iln (%) From stage 0 to the critical point, the loss is 0.

After passing the critical point, loss begins to in-crease. With different
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evacuation speed change ratios, the loss structure has different slopes and
critical points.

In this changed loss structure, the policy region changes as shown in
Figure 5.
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FIGURE 5. Policy region with normal (solid) and double (faint) evacuation
speeds

With normal evacuation speed, the DM can wait up to stage 18. With
doubled evacuation speed, the DM can wait up to stage 22.

Figure 6 shows the values of Vj(pg), the value of optimal decision at the
initial stage, for different evacuation speeds. Increasing evacuation speed is
shown to be valuable be-cause it decreases Vo(pg) -

Figure 6 shows that small increases in evacuation speed have a large effect
on the value of the optimal policy, but the benefit from further improvement
is limited. The latter is mainly due to the shifted critical point. In this
example, the critical points for evacuation speeds x1.0, x1.2, x1.4, x1.6,
x1.8, and x2.0 are 0.0, 14.3, 18.6, 21.0, 22.5, and 23.6, respectively. As the
evacuation becomes faster, the new critical point moves closer to the final
stage. Then the value of Vj(py) becomes less sensitive to change in loss
structure be-cause the loss is constant at 0 until the critical point and it
changes only after the critical point.

5 Conclusion and Future Research

We developed a framework to assess the value of improved evacuation speed
in a dynamic multistage decision setting. Using this framework, we can com-



15

0.5

0.48 \

0.46

VO(p)
o
ES

0.42 - a4
0.4
0.38
x1.0 x1.2 x1.4 x1.6 x1.8 x2.0
Bvacuation speed

FIGURE 6. Values of optimal decision under different evacuation speeds

pare the value of investment in improved evacuation to other investments.
Examining various loss profiles shows that speeding evacuation moves the
critical point toward the moment of hurricane strike. In other words, faster
evacuation allows more time to wait without increasing the risk of loss from
the hurricane. This shows an interesting parallel between the value of evac-
uation speed and the value of information. An improvement on evacuation
speed is equivalent to some level of improvement on information quality.
For example, the value of instantaneous evacuation is equal to the value of
perfect information on the storm.

Future research will focus on forecast accuracy in order to compare the
value of in-vestment in evacuation efficiency and in forecast improvement.
We will also consider variable evacuation cost and different loss profiles
based on the decision timing. By doing so, we will formulate a more pow-
erful tool to determine which investment is more valuable: roads or radar.
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