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1. Introduction
Decision analysts frequently encounter problems in
which complete probabilistic information is unavail-
able. For example, Sarin (1978, 1979), Lowell (1994),
Abbas (2006), and Bickel and Smith (2006) all
described decisions where the joint probability distri-
bution was underspecified. In these cases, we lack a
unique probability distribution with which the deci-
sion can be analyzed.

Formally, suppose the value of an alternative
depends upon the discrete probability distribution Ï,
which is a member of the set �= 8Ï2 AÏ = b1Ï ≥ 09.
The linear system AÏ = b encodes any information
that we do have, such as marginal and conditional
assessments. We assume that the assessed information
is consistent, such that � is not empty. We refer to � as
the truth set, because any member of � is a probability
distribution consistent with the assessed information
and, as such, could be the “true” distribution.

This paper addresses how to evaluate a deci-
sion and formulate a recommendation when � is
also not a singleton. In this case, there is an infi-
nite (uncountable) number of possible distributions
matching the assessed information. Although, we are
primarily motivated by underspecification of proba-
bilistic dependence, the methods and approximations
we discuss could be applied in the case of incomplete
marginal information, missing conditional probabili-
ties, etc.

Decision analysts have long addressed the problem
of underspecification by developing approximation
methods that specify a unique probability distribution
given partial information. For example, Jaynes (1957)
developed the principle of maximum entropy (ME)
and specifically recommended its use in decision anal-
yses (Jaynes 1968). Under ME, one uses the distribu-
tion within � that is as close as possible to uniform,
subject to honoring any information that one does
have. Several authors have used ME to specify a joint
distribution using marginal and conditional assess-
ments (e.g., see Ireland and Kullback 1968, Lowell
1994, MacKenzie 1994, Abbas 2006, Bickel and Smith
2006). An equivalent procedure is to choose the dis-
tribution that minimizes the Kullback–Leibler (KL)
divergence to a reference distribution that assumes
independence (Kullback and Leibler 1951).

More recently, Keefer (2004) introduced the “under-
lying event” (UE) model, where it is assumed that
all random variables are conditionally independent
given another “hidden” or “underlying” random vari-
able. In this case, the analyst simply needs to assess
one conditional probability involving the underlying
event, which determines the entire joint probability
mass function (pmf).

Both Abbas (2006) and Bickel and Smith (2006)
quantified the accuracy of ME and other methods
such as UE within the confines of their illustrative
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examples. ME was found to exceed the accuracy of
UE and assumptions of independence.

Copulas (Sklar 1959) have also been used to specify
a single joint distribution given lower-order compo-
nent distributions such as marginals and pairwise cor-
relation coefficients (Clemen and Reilly 1999). Montiel
and Bickel (2012b) discussed copulas at length and
contrasted their use with the simulation method pre-
sented in this paper. For this reason, we do not con-
sider them further here.

Sarin (1978, 1979) proposed a sequential assess-
ment procedure for binary random variables in which
lower-order assessments were used to constrain the
set of feasible higher-order distributions. For exam-
ple, in a setting consisting of three binary random
variables 4X11X21X35, Sarin (1979) derived bounds
on the eight joint probabilities p4X11X21X35 given a
marginal assessment p4X15 and the conditional distri-
bution p4X2 � X15. These bounds could then be pro-
vided to the expert, and may aid the assessment.
Sarin’s (1979) procedure does not specify a unique
distribution. Rather, it is a structured process by
which additional information is assessed and used
to specify the full joint distribution. As such, it is
fundamentally different from the approach taken in
this paper, which addresses how to proceed given
that further information is unavailable. Moskowitz
and Sarin (1983) demonstrated that specification of
marginal and conditional assessments in a binary set-
ting significantly restricts the feasible region for joint
probabilities. However, just how “tight” these bounds
need to be depends upon the decision problem and
the objective function. Montiel and Bickel (2012b)
and Montiel (2012) showed that marginal and pair-
wise assessments might not significantly reduce the
range in which a targeted level of performance may
fall (e.g., the probability of achieving a positive net
present value (NPV)).

Other approaches could be considered ad hoc. For
example, Moore and Mudford (1999), Stabell (2000),
and Delfiner (2003) all developed approaches where
uncertainties are categorized as perfectly dependent
or independent. In practice, it is common to simply
ignore dependence because it complicates probability
assessments (Korsan 1990, Bickel and Smith 2006).

The contribution of this paper is fourfold. First,
we introduce two methods to approximate discrete

joint probability distributions given partial informa-
tion. As we show later, these methods might be better,
in a sense to be made clear, than existing approx-
imation methods such as ME. Second, we extend
the accuracy studies conducted by Abbas (2006) and,
in particular, Bickel and Smith (2006). Third, we illus-
trate the use of our approximations within the context
of the illustrative example presented by Bickel and
Smith (2006). Finally, we demonstrate the use of our
simulation procedure, discussed herein and presented
by Montiel and Bickel (2012a, b), to test the robustness
of decision alternatives.

This paper is organized as follows: §2 summarizes
our simulation procedure, which serves as a basis for
our analysis and provides a benchmark for measuring
the accuracy of the approximations; §3 summarizes
existing methods to approximate probability distri-
butions given partial information and introduces
our two approximations; §4 introduces the sequen-
tial exploration problem that we use to motivate
and explain our procedures; §5 quantifies and com-
pares the accuracy of the approximation methods;
§6 demonstrates how to use our simulation procedure
to find robust decision alternatives; and §7 concludes
the paper.

2. Generating a Collection of
Feasible Joint Distributions

This section briefly explains the Monte Carlo simu-
lation procedure that we use to sample from � and
thereby generate millions of feasible pmfs. As demon-
strated by Montiel and Bickel (2012a), this collection
can be used to evaluate the decision under a set
of distributions, all of which are consistent with the
information we do have, while assuming nothing fur-
ther. This paper uses this collection of distributions to
quantify the accuracy of approximation methods that
specify a single distribution within �.

The joint distribution simulation approach (JDSIM)
proposed by Montiel and Bickel (2012a, b) employs
the hit-and-run sampler (HR) (Smith 1984) to uni-
formly sample �. HR is the fastest known algorithm
to sample the interior of an arbitrary polytope (Lovasz
1998). HR can be extended to sample nonuniformly
(Bélisle et al. 1993). However, we are presently unsure
how to specify a distribution over the set of all distri-
butions in �. Dyer et al. (1973) faced a similar problem
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when specifying a utility function given partial prefer-
ence information. They assumed that utility functions
were uniformly distributed within their “truth set.”
We will also sample uniformly from � and regard our
procedure as a form of sensitivity analysis. For exam-
ple, we will be able to test optimal policies across the
entire range of feasible distributions, with the cau-
tion that all distributions within � may not be equally
likely.

Figure 1 provides a graphical representation of the
JDSIM algorithm in two dimensions. The sampler is
initialized (Step 1) by generating an arbitrary point
xi ∈� and setting the counter i = 0. Step 2 generates a
set of directions D ⊆ �n using an uncorrelated multi-
variate standard normal and standardizing the direc-
tions. Step 3 selects a uniformly distributed direction
di ∈ D. Step 4 finds the line L = � ∩ 8x � x = xi + �di,
� a real scalar} generated by extending the direc-
tion di in both directions until the boundary of � is
reached. Step 5 selects a random point xi+1 ∈ L uni-
formly distributed over the line. Finally, Step 6 eval-
uates the counter and stops if i = N (where N is the
desired number of samples); otherwise the counter
is incremented by one, and the sampler returns to
Step 2.

The interested reader should refer to Montiel and
Bickel (2012a, b) for technical details regarding JDSIM
and its performance characteristics.

3. Approximating the
Joint Distribution

This section reviews two common approaches for
addressing missing probabilistic information by spec-
ifying a single distribution that is consistent with the
available information. Then, two new methods are
proposed.

3.1. Maximum Entropy
Jaynes (1957) proposed using the distribution in �
that has the highest entropy, which we denote ÏME .
Formally, ÏME is defined as

ÏME = arg max
Ï=8�110001�n9

−

n
∑

i=1

�i ln�i1

s.t. AÏ = b1

Ï ≥ 00

(1)

ME can be understood as the joint distribution in the
interior of � that has the minimum self-weighted geo-
metric mean. In the case of the unit simplex, this point
is the uniform distribution.

3.2. Underlying Event
Keefer (2004) introduced an approximation known
as the UE model, which assumes that the random
variables are independent given another “hidden” or
“underlying” random variable. This procedure pro-
duces a single, approximate pmf. However, this pmf
may not be a member of � because it does not
take into account all the conditional assessments (con-
straints). In fact, in the decision considered next, UE
produces an approximation equal to an assumption
of independence. For this reason, we do not consider
it further, but will instead compare our results to the
independent (IN) pmf, ÏIN .

3.3. Analytic Center
We augment these approximations by considering
the analytic center (AC) of �. The AC has been
used extensively within the optimization commu-
nity to initialize interior point algorithms (Bertsimas
and Tsitsiklis 1997, Bertsekas 1999, Boyd and
Vandenberghe 2004). The pmf ÏAC is defined as

ÏAC = arg max
Ï=8�110001�n9

n
∑

i=1

ln�i1

s.t. AÏ = b1

Ï ≥ 00

(2)

In our setting, the AC seeks to maximize the geomet-
ric mean, or the product of the joint probabilities.

Loosely speaking, the AC is the point within �
that is farthest from all the constraints and is used
within the optimization community because it pos-
sesses desirable “centrality” properties. In the unit
simplex, the AC is the uniform distribution, as is the
case for ME. However, these two “centers” might not
coincide in the more general case.

3.4. Sample Average
Finally, we will consider another new approximation.
Each point generated using JDSIM is a complete pmf.
Nonetheless, one may want to evaluate the decision
under a single pmf for reasons of computation or
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Figure 1 Illustration of JDSIM in Two Dimensions

Step 1. xi ∈ �. Step 2. Generate set D. Step 3. Choose di ∈ D.

Step 4. Use di to set L. Step 5. Select xi + 1 ∈ L. Step 6. Return to Step 2.

communication. To do so, we calculate the element-
wise average of the m sampled pmfs, Ïi ∀ i = 11 0 0 0 1m.
We refer to this pmf as the sample average (SA) and
denote it as ÏSA. Because ÏSA is a convex combina-
tion of the points Ïi within �, which is convex, it is a
feasible joint distribution. The pmf ÏSA is defined as

ÏSA
=

1
m

m
∑

i=1

Ïi1 (3)

where the summation is taken element-wise.

3.5. Other Approximations
In the interest of space, other approximations such
as the Chebyshev center and the maximum-volume-
inscribed-ellipsoid center (Boyd and Vandenberghe
2004) are not considered here, but these are investi-
gated in detail by Montiel (2012). Additionally, Dyer
et al. (1973) suggested using the centroid of the cor-
responding polytope. In our case, this is infeasible
because it requires specifying all of the polytope’s ver-
tices in advance. For high-dimensional polytopes, this
is difficult, if not impossible, on a reasonable time
scale. For example, consider a simple joint probability
distribution comprised of eight binary random vari-
ables, whose marginal distributions are known. The
polytope encoding these constraints could have up
to 1013 vertices (McMullen 1970). Although this is an
upper bound, the number of vertices likely to present
in real-world problems is still enormous (Schmidt and
Mattheiss 1977).

4. Illustrative Example
We now illustrate and compare our methods by using
the example presented by Bickel and Smith (2006).
Bickel and Smith (2006) presented an oil exploration
decision and considered a field with six possible well
locations. Each well could be wet (i.e., oil is present)
or dry (i.e., oil is absent). Company experts believed
that the wells were probabilistically dependent. The
challenge was how to construct the joint pmf and
determine the optimal exploration sequence.

For convenience, we summarize the problem pre-
sented by Bickel and Smith (2006) using their nota-
tion. Formally, let wi = 1 if well i is wet, and let wi = 0
if it is dry. Likewise, let the probability that well i is
wet be pi ≡ P4wi = 15. If well i is wet, the expected
value of this success is si. However, if the well is dry,
the expected value of this failure is fi.

Let the vector w = 4w11 0 0 0 1wn5 represent the joint
outcome for n wells. For example, w = 4110111110105
represents the case where wells 1, 3, and 4 were wet
and wells 2, 5, and 6 were dry. Let Ï ≡ �4w5 be the
joint pmf defined over the well outcomes w.

Bickel and Smith’s (2006) data are presented in
Table 1. Expected values are in millions of dollars and
represent NPVs for the period in which the well is
drilled. The intrinsic values shown in Table 1 are the
unconditional expected values: pisi + 41 − pi5fi. In this
example, the intrinsic values are all negative, imply-
ing that the company should not drill any of the wells
if they are considered in isolation.
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Table 1 Bickel and Smith (2006) Example Well Data

Expected values

Probability of Given Given Intrinsic
Well success 4pi 5 success 4si 5 failure 4fi 5 value

1 0035 60 −35 −1075
2 0049 15 −20 −2085
3 0053 30 −35 −0055
4 0083 5 −40 −2065
5 0033 40 −20 −0020
6 0018 80 −20 −2000

The company believed that success or failure at
one location may make the presence of hydrocarbons
at another location more or less likely, respectively.
However, this is not reflected in the data in Table 1.
As detailed by Bickel and Smith (2006), assessing the
full joint distribution would require 63 (26 − 1) prob-
ability assessments, including many that would be
heavily conditioned. Although this task was deemed
too difficult, the company was comfortable providing
the pairwise conditional probabilities of success for
well i given success of well j1 ∀ i 6= j , given in Table 2.

Well 4 was believed to be pairwise independent of
all other wells. It will be seen as helpful to recast
the information given in Tables 1 and 2 into pair-
wise joint probabilities, pi1 j ≡ p4wi = 11wj = 15 =

p4wj = 1 � wi = 15p4wi = 15. These values are shown in
Table 3.

The assessments in Tables 1 and 3, along with the
requirement that the joint pmf sums to unity, define a
polytope AÏ = b that contains all feasible joint pmfs.
Again, we refer to this polytope as the truth set and
define it as � = 8Ï2 AÏ = b1Ï ≥ 09. Any Ï that is a
member of � is a feasible joint pmf consistent with
the assessed information.

In this case, A is a 22-by-64 matrix of zeros and
ones (Appendix A) that represents the 22 constraints

Table 2 Bickel and Smith (2006) Pairwise Conditional Assessments of Well Success

Direct conditional assessments p4wj = 1 � wi = 15 Implied moment correlation matrix 4�ij )

i\j 1 2 3 4 5 6 Marginal pi 1 2 3 4 5 6

1 0059 0063 0083 0039 0031 0035 00147 00147 0 00094 00248
2 0065 0083 0055 0024 0049 00236 0 00459 00153
3 0083 0042 0031 0053 0 00203 00359
4 0033 0018 0083 0 0
5 0026 0033 00146
6 0018

Table 3 Bickel and Smith (2006) Pairwise Joint Assessments of
Well Success

p4wj = 11wi = 15

i\j 1 2 3 4 5 6

1 002065 002205 002905 001365 001085
2 003185 004067 002695 001176
3 004399 002226 001643
4 002739 001494
5 000858
6

(the requirement that the probabilities sum to one, six
marginal constraints, and 15 pairwise constraints) and
the 64 (26) elements of the joint distribution; Ï is the
joint pmf, which in this case is a vector of 64 joint
probabilities. The vector b encodes the 22 constraints
described previously:

b = 61100351004910053100831003310018100206510022051

002905100136510010851003185100406710026951

001176100439910022261001643100273910014941

00085870

The set � contains an infinite number of feasible
pmfs, which is the challenge stated at the outset.
In the following, we evaluate the four approximation
methods that specify a single distribution within the
truth set, using a collection of four million pmfs, each
of which is consistent with the information in Tables 1
and 3. Four million pmfs are sufficient, in this case,
to ensure that � is uniformly covered (Montiel and
Bickel 2012a).

Once a single distribution has been specified by
one of the procedures discussed in §3, we proceed
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to determine the optimal exploration sequence. The
structure of the decision is as follows: we decide
which well to drill first (if any); based on whether
that well is wet or dry, we decide which well to drill
next, and so on, through the n = 6 stages. Following
Bickel and Smith (2006), we find the optimal explo-
ration sequence using dynamic programming (DP). In
the interest of space, Bickel and Smith’s (2006) formu-
lation is not repeated here.

Figure 2 presents the optimal policies under the IN,
ME, AC, and SA approximations. The pmfs associated
with these optimal polices are given in Appendix B. In
the case of IN, the optimal policy, shown in Figure 2(a),
is to not drill, ensuring an NPV of $0. Figure 2(b)
shows the optimal policy under the ME approxima-
tion. This policy, which matches Bickel and Smith’s
(2006) Figure 2, begins by drilling well 3. If well 3 is
wet, then well 6 is drilled; otherwise drilling stops. If
wells 3 and 6 are wet, then well 1 is drilled, and so on.
The dollar values in these figures are the continuation
values (Bickel and Smith 2006, Equation (8)). So, for
example, the value of the ME optimal policy is $14.4
million. This contrasts with each well having had a
negative value in isolation (i.e., ignoring the depen-
dence structure). Under ÏME it is never optimal to drill
well 4 because, as shown in Table 2, well 4 was spec-
ified as being pairwise independent of all the other
wells, and, without additional information, ME will
force higher-order assessments toward independence.

Figure 2(c) presents the AC optimal policy, whose
value is $14.6 million. This policy begins by drilling
well 2 instead of ME’s choice of well 3. If well 2 is
wet, then well 5 is drilled, which is earlier than in
the ME policy. Most strikingly, the AC optimal pol-
icy calls for drilling well 4, the pairwise independent
well, if at least four of the previous wells were wet.
Thus, the AC approximation has encoded the possi-
bility of higher-order dependence that was assumed
not to exist in the case of ME.

Finally, Figure 2(d) presents the SA optimal policy,
with a value of $14.71 million. Like the AC, the SA
begins by drilling well 2. In fact, the only difference
between the AC and SA optimal policies is that, under
SA, we drill well 4 even if well 6 ends up being dry,
after success at wells 2, 5, and 3.

The values of the optimal policies differing among
ME ($14.4 million), AC ($14.6 million), and SA

($14.71 million) is a result of differing optimal policies
and that these expected values are being computed
under differing probability distributions. Later in this
paper we will isolate these two effects.

Given that many approaches exist for specifying
a unique joint distribution within the truth set, it
needs to be determined how “representative” or accu-
rate they are, that is, how well the ME, AC, and SA
policies perform across the set of distributions con-
tained in �.

5. Approximation Accuracy
We will consider two notions of accuracy. First, we
will determine how “close” each of our approxima-
tions is to all other pmfs in the truth set, or how
representative each approximation is of the entire set.
Second, we will investigate how well the optimal pol-
icy associated with a particular approximation per-
forms across the set of feasible distributions.

5.1. Accuracy Measures
We consider four measures of accuracy, defined in
Equations (4a)–(4d), where Ï is a sampled pmf, �i

is the ith element of Ï, n is the number of joint
events in Ï, and Ï∗ is an approximate pmf, such as
ÏME1ÏAC1ÏIN , or ÏSA.

The average absolute difference (AAD), or the
scaled L1-norm, measures the average absolute dif-
ference between the elements of two pmfs. The max-
imum absolute difference (L�-norm) defines the
difference between two pmfs to be equal to the
maximum difference between any two elements.
The Euclidean distance (L2-norm) is the straight line
distance in n-dimensional space between the two
pmfs. Finally, KL divergence measures the relative
entropy between a pmf and a reference distribution,
which we take to be one of the approximate pmfs.
In this paper, we use the binary or base-2 logarithm:

AADn4Ï1Ï
∗5=

1
n
L14Ï1Ï∗5=

1
n

n
∑

i=1

��i −�∗

i �1 (4a)

L�

n 4Ï1Ï
∗5= max8��1 −�∗

1 �1 · · · 1 ��n −�∗

n�91 (4b)

L2
n4Ï1Ï

∗5=

[ n
∑

i=1

4�i −�∗

i 5
2

]1/2

1 (4c)

KLn4Ï�Ï∗5=

n
∑

i=1

�i log
(

�i

�∗
i

)

0 (4d)
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Figure 2 Optimal Policy Under Four Approximation Methods

(a) IN optimal policy (b) ME optimal policy

(c) AC optimal policy (d) SA optimal policy

Note. $ in millions.
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5.2. Approximation Representativeness
The analysis in this section complements the study
of accuracy presented by Bickel and Smith (2006),
who used a simulation procedure proposed by Keefer
(2004). Bickel and Smith (2006) generated a joint pmf
at random, extracted its marginal and pairwise joint
probabilities, executed an approximation procedure
(ME, IN, and UE) given these marginal and pairwise
joint probabilities, and then compared the simulated
pmf to this approximation. Using the language in
our current paper, Bickel and Smith (2006) generated
a large number of random polytopes (truth sets),
determined the approximate pmfs within these poly-
topes (again, ME, IN, and UE), and then compared
these approximations to a single distribution in each
polytope (i.e., the one they sampled). This proce-
dure provides very little control over the structure of
the polytope (marginal probabilities, correlations, etc.)
and fails to measure the accuracy of an approxima-
tion within a single problem formulation. Likewise,
the simulation procedure used in Abbas (2006), based
on the method of uniform spacings (Devroye 1986),
cannot be used to sample joint distributions within a
given polytope. JDSIM overcomes these limitations by
providing samples within a single polytope, matching
known and easily controlled constraints.

Specifically, we compute our accuracy measures
(Equations (4a)–(4d)) for each of the four million
pmfs we sample, relative to the IN, ME, AC, and SA
approximations. Histograms of our results are shown
in Figure 3.

Each of the subfigures corresponds to one measure
of accuracy (AAD1L�1L2, or KL) and presents the
distribution of the distance (or divergence) for each
of our sampled distributions to ÏIN (light gray), ÏME

(medium gray), ÏAC (dark gray), and ÏSA (dashed
line). Table 4 provides the mean and standard devi-
ation of our four error measures. In addition, we
present the fraction of times a sampled distribution Ï

was closer to one approximation than another.
Table 4 is analogous to Bickel and Smith’s (2006)

Table 6. However, direct comparison is difficult
because, as discussed earlier, Bickel and Smith (2006)
calculated the distance between a single pmf and
an approximation in 5,000 different polytopes and
averaged the results. In contrast, we calculate the
average distance between each of the four million

distributions and an approximation within the same
polytope, which is consistent with the information in
Tables 1 and 3. Although, as discussed next, the find-
ings are broadly similar in the sense that ME is a
better approximation than IN, we expand upon this
finding by showing that the AC and SA are better
than ME, using Bickel and Smith’s (2006) accuracy
measures.

Figure 3 and Table 4 yield several observations:
• IN, which in our case is equivalent to UE, pro-

vides a very poor approximation. This can be seen
by noting that the IN frequency plots in Figure 3 are
far to the right of the other approximations. Like-
wise, the mean AAD and L�-norm (Table 4) are 0.0113
and 0.1262, respectively. These values are between
1.79 and 3.34 times larger than the next best approx-
imation, which is ME. This result is not surprising
given that the IN approximation is not within the inte-
rior of �.

• AC tends to be closer than either IN or ME to
all other distributions in �, on each of our four mea-
sures. For example, the mean AAD between the sam-
ples and AC is 0.0054, compared to 0.0063 for ME and
0.0113 for IN. Furthermore, considering AAD as an
example, only 18.0% of the sampled pmfs were closer
to ME than they were to AC, and none was closer
to IN. Only 6.8% of our sampled pmfs were closer to
ME than AC, as measured by KL divergence. In this
sense, AC is more representative than ME of the set
of possible distributions.

• AC is less extreme than either IN or ME, in that
pmfs within � have a higher variation with respect to
IN and ME, as measured by the standard deviation.
For example, the standard deviation in the maximum
absolute difference is 0.0083 for AC, 0.0119 for ME,
and 0.0189 for IN.

• AC is very close to SA, as evidenced by their
histograms in Figure 3 being almost indistinguish-
able (again, SA is the thin dashed line). The AAD,
L�-norm, L2-norm, and KL divergence from AC to
SA are 0.0011, 0.0082, 0.0171, and 0.0051, respectively.
This is significant because determining the AC is less
difficult than generating and averaging millions of
pmfs. Therefore, these results appear to make a strong
case for using the AC to determine the optimal explo-
ration sequence under a single pmf.
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Figure 3 Accuracy of Joint Distribution Approximations
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These results suggest that the AC may be a bet-
ter approximation than the ME in the case of partial
information. If � can be sampled, then SA also pro-
vides a good approximation. Although these findings
are conditional upon a single decision situation, our
conjecture is that similar results will hold in many
other cases, because AC has desirable “centrality”
properties.

5.3. Approximation Effect on Optimal Policies
Let �∗4Ï5 be the expected NPV of the optimal pol-
icy evaluated under approximation ∗ (i.e., the value
of the ∗ optimal policy), evaluated under Ï. Figure 4
displays the distribution of the value of the ME, AC,
and SA optimal policies using our collection of four
million pmfs. Table 5 reports the mean and standard
deviation of these values under the (v) measure. Also

shown in this table is the frequency that each approxi-
mation produced a lower expected NPV than another
approximation.

Recall that �IN 4Ï5 = 0 for any Ï ∈ �, because
the IN optimal policy is not to drill. The SA pol-
icy displays the best performance, with an average
NPV of $14.71 million, followed by the AC policy
at $14.68 million, and the ME policy at $13.34 mil-
lion. Thus, the AC optimal policy is $1.34 million bet-
ter than the ME optimal policy used by Bickel and
Smith (2006). In addition, the minimum and maxi-
mum NPVs achieved under the AC policy are greater
than those of the ME policy. This suggests that the
AC is more robust than ME. Likewise, the ME opti-
mal policy underperformed either the AC or SA opti-
mal policies in over 70% of the sampled distributions
(Table 5).
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Table 4 Probability Accuracy Results

IN ME AC SA

i. Average absolute difference
Mean 0.0113 0.0063 0.0054 0.0054
Std. dev. 0.0008 0.0012 0.0011 0.0011
Fraction< SA (%) 0.0 19.2 45.5 —
Fraction< AC (%) 0.0 18.0 — 54.5

ii. Max absolute difference (L�-norm)
Mean 0.1262 0.0378 0.0294 0.0294
Std. dev. 0.0189 0.0119 0.0083 0.0084
Fraction< SA (%) 0.0 26.8 54.2 —
Fraction< AC (%) 0.0 24.3 — 45.8

iii. Euclidean distance (L2-norm)
Mean 0.1734 0.0815 0.0687 0.0686
Std. dev. 0.0166 0.0188 0.0159 0.0159
Fraction< SA (%) 0.0 24.3 45.2 —
Fraction< AC (%) 0.0 23.3 — 54.8

iv. KL divergence
Mean 0.6095 0.2334 0.1802 0.1795
Std. dev. 0.0649 0.0649 0.0536 0.0528
Fraction< SA (%) 0.0 8.2 43.7 —
Fraction< AC (%) 0.0 6.8 — 56.3

In addition to the distribution of the expected NPV,
we also calculate what Bickel and Smith (2006) termed
the “lost value” (LV), by using an approximation
rather than the true (but unknown) distribution. The
lost value represents the decrease in value that stems
from using the approximate pmf in lieu of the true
pmf. Let the NPV of the optimal policy generated

Figure 4 Distribution of the Optimal-Policy Value for ME (Medium
Gray), AC (Dark Gray), and SA (Dashed), Evaluated Under
Four Million Sampled Joint Distributions
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Notes. The vertical lines indicate the average NPV for ME (thin solid line),
AC (thick), and SA (dashed) policies. The IN optimal policy is to never drill.

Figure 5 Distribution of Lost Value for 160,000 Sampled Joint
Distributions: IN (Light Gray), ME (Medium Gray),
AC (Dark Gray), and SA (Dashed)
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using Ï ∈� be �4Ï5. Then, the LV for approximation
∗ is defined as:

LV∗4Ï5= �4Ï5− �∗4Ï5 ∀Ï ∈�0 (5)

The calculation of LV∗4Ï5 took an average of 20
seconds per distribution, which made it impractical
to solve the complete sample of four million pmfs.
Therefore, we selected a random subcollection of
160,000 samples to compute the LV.

Figure 5 shows the distribution of LV∗4Ï5 for IN,
ME, AC, and SA policies under 160,000 sampled joint
pmfs. We present the mean and standard deviation of
these results in Table 5, under measure (vi). We also
compute the frequency that each approximate optimal
policy outperformed either SA or AC.

Because �IN 4Ï5 = 0, the distribution of LVIN 4Ï5 is
simply the distribution of �4Ï5, which is the distribu-
tion of the optimal NPV evaluated under the possible
true distributions. Thus, knowing the true joint distri-
bution and following the corresponding optimal pol-
icy would earn an expected NPV between $14.4 and
$22.3 million, with an average of $17.6 million, which
is the average LV by following IN optimal policy.

ME has an average LV of $4.29 million that exceeds
the corresponding values of $2.95 and $2.91 for AC
and SA, respectively. Furthermore, ME outperformed
AC in only 23.4% of the cases. SA outperformed AC
approximately 57.7% of the time.

In sum, the results in Tables 4 and 5 demonstrate
that within the context of the decision problem con-
sidered here, AC and SA are more representative of
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Table 5 Optimal Policy Accuracy Results

IN ME AC SA

v. Value of optimal policy ($ millions)
Mean 0000 13034 14068 14071
Std. dev. 0000 1055 1033 1039
Fraction< SA (%) 100.00 70061 57067 —
Fraction< AC (%) 100.00 70055 — 42033

vi. Optimal policy lost value ($ millions)
Mean 17062 4029 2095 2091
Std. dev. 1018 2016 1051 1054
Fraction< SA (%) 0000 29030 42030 —
Fraction< AC (%) 0000 23040 — 57070

the set of all distributions that are consistent with the
information provided in Tables 1 and 3 than either
ME or IN. Furthermore, AC performs almost as well
as SA. Therefore, if the time or resources are inad-
equate to use JDSIM, AC may provide a very good
approximate distribution under which the decision
can be analyzed.

6. Searching for Robust Policies
Having completed our study of approximation accu-
racy, we now demonstrate how to use the JDSIM pro-
cedure to solve Bickel and Smith’s (2006) example in
a new way. Rather than finding the optimal policy
under a single approximation, we search for optimal
policies that are “good” or “robust” under a large set
of feasible distributions. By robust, we mean policies
that are optimal across a range of distributions within
our truth set.

As with the lost value calculation, we start by tak-
ing a subcollection of 160,000 sampled distributions

Figure 6 Most Common Optimal Policies

C
ou

nt

Strategies

80

60

40

20

0
0 20,000 80,00060,00040,000

from the full collection of four million and solve for
the optimal policies. Excluding the 77,795 policies that
are duplicates yields 82,205 policies that are optimal
for at least one Ï ∈ �. This large number of optimal
policies demonstrates the complexity of the decision
situation and the degree to which the optimal policy
can vary. Figure 6 shows the number of times that
different optimal policies appear, where each dot rep-
resents a single optimal policy. Although many of the
160,000 optimal policies are possible, the vast majority
appear less than 10 times; only nine optimal policies
appear more than 50 times. This last group includes
the policies that are optimal for the largest number of
joint distributions sampled in the subcollection.

A complete analysis of the 82,205 policies is not
feasible here. Therefore, we reduce our scope to the
nine policies having the highest optimality count and
present them in Figure 7. We also evaluate the three
policies from the approximate distributions. For each
of these optimal policies, we evaluate the expected
NPV under all four million joint distributions in the
original collection sampled from �. Table 6 shows the
mean, standard deviation, minimum, and maximum
values for the expected NPVs generated by each pol-
icy given the collection sampled from �. The first
three columns (ME, AC, and SA) repeat the values
reported in Table 5.

Of the policies shown in Table 6, the top four per-
formers, in descending order, are SA, AC, S4, and ME.
With a mean of $14042 million, S4 outperforms ME
($13034 million) and is close to SA ($14071 million).
Moreover, its minimum is the highest except for AC,
and its maximum is the highest of them all.

We now test the relative robustness of the policies
in Table 6. Specifically, we determine the fraction of
times each policy outperforms the others across our
set of four million distributions. These results are pre-
sented in Figure 8. Four of the policies appear to be
the most robust: S4, SA, AC, and ME. However, S4
outperforms SA by nearly 11 percentage points. By
selecting S4 we will be better off approximately 26%
of the time (1.04 out of 4 million) than if we would
have selected one of the other 11 policies.

Before concluding, we address one further issue
considered by Bickel and Smith (2006). They ex-
plained why it is optimal to start by drilling well 3
rather than one of the other five wells. To do so, they
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Figure 7 Optimal Policies with Highest Frequencies

 (a) Highest frequency (S1) (b) Second highest frequency (S2) (c) Third highest frequency (S3)

(d) Fourth highest frequency (S4) (e) Fifth highest frequency (S5) (f) Sixth highest frequency (S6)

(g) Seventh highest frequency (S7) (h) Eighth highest frequency (S8) (i) Ninth highest frequency (S9)
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Table 6 Profit Statistics for Selected Optimal Policies ($ Millions)

PMF approximations High-frequency full optimal policies

ME AC SA S1 S2 S3 S4 S5 S6 S7 S8 S9

Mean 13034 14068 14071 12084 13027 13005 14042 13046 12099 13039 13004 13026
Std. dev. 1055 1033 1039 2014 1090 1056 1069 1055 1053 1061 1083 1063
Min. 9026 10033 9073 7016 7003 8080 9090 8017 7065 7043 7026 7012
Max. 18022 18046 18069 18096 18087 18068 20004 18046 17082 18009 18099 18032

determined the expected NPV if one starts by drilling
each of the six wells and then follows the optimal
policy thereafter (see Bickel and Smith 2006, Table 5).
They found that whereas the expected NPV if one
starts with well 3 was $14.4 million, the expected NPV
of starting with well 2 was $14.3 million. Thus, the
optimal policies that begin with these two wells are
close in value, being almost indistinguishable in this
case. We now use JDSIM to provide additional insight
into this finding.

Figure 9 plots the frequency with which each of
our 160,000 optimal policies begins with a given
well. Beginning with well 2 is seen to be optimal
in 65.7% (105,131/160,000) of the cases, compared
to approximately 33.4% (53,487/160,000) for well 3.
Thus, although the values of the optimal policies
beginning with well 2 or 3 are close, about twice as
many optimal policies begin with well 2. Also, more
than 1,000 policies begin by drilling well 4, which
was never drilled under Bickel and Smith’s (2006) ME
optimal policy because it was pairwise independent
of all the other wells.

Figure 8 Fraction of Time Each Policy is the Best Alternative in a
Sample of Four Million Distributions
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7. Discussion and Conclusion
In this paper, we have challenged long-standing
methods such as maximum entropy by demonstrat-
ing, within a single decision problem, that it may not
produce an approximation that is the most represen-
tative of the set of all feasible distributions. Other
approximations, such as the analytic center, may
provide better performance. This finding is limited,
however, by our assumption of uniform sampling.
Nonetheless, it highlights the assumptions underlying
the use of maximum entropy. Bickel and Smith (2006)
motivated their use of maximum entropy by noting
that higher-order assessments were either too difficult
or would expend excessive time or resources, not that
experts had “no idea” regarding higher-order assess-
ments. In this case, maximum entropy may not be the
most reasonable approximation. An analyst’s lacking
the time or resources to perform an assessment differs
from carefully considering the assessment and having
“no idea.” In the maximum-entropy framework, “no
idea” has a precise mathematical meaning: maximum
entropy will try to force any unspecified relationships
toward an assessment of independence, irrespective

Figure 9 Number of Times Each Optimal Policy Begins with the
Listed Well

0

Well 2 Well 3 Well 4Well 1 Well 5 Well 6

100,000

8,000

6,000

4,000

2,000

0

105,131

53,487

1,149 051



Montiel and Bickel: Joint Distribution Approximations
Decision Analysis 10(1), pp. 26–41, © 2013 INFORMS 39

of the analyst’s intent. In the oil and gas problem we
considered, well 4 was pairwise independent of all
other wells. Maximum entropy interpreted the lack of
any higher-order assessments as a statement of inde-
pendence and thus assumed that well 4 was indepen-
dent of all other wells. The analyst might allow for the
possibility that higher-order dependence exists, even
though the time and/or resources to assess it might
have been unavailable.

Continuing this line of thought, rather than assum-
ing a single distribution, be it maximum entropy,
analytic center, or some other approximation, the ana-
lyst might want to test a large collection of feasible
distributions. This testing will provide insight into the
robustness of different decision alternatives. The sim-
ulation procedure presented in this paper offers the
possibility of testing alternatives to a greater degree
than has been done in the past. This may improve
the confidence decision makers have in their choices.
Likewise, this simulation procedure could be used
iteratively to determine whether further assessments
are worthwhile. For example, Figure 4 shows that
the range of expected NPVs obtained by following
the analytic-center optimal policy is between approx-
imately $11 and $18 million. This uncertainty range is

Appendix A. Elements of the Truth Set

We define the truth set as �≡ 8Ï �AÏ = b1Ï ≥ 09. The first row of A constrains the probabilities to sum to one. Rows 2–7
select the joint elements of Ï necessary to generate the marginal event probabilities for all six wells being wet. Rows 8–22
select the joint elements of Ï necessary to generate the pairwise event probabilities of wells i and j1 i 6= j , being wet. A is
then defined as follows:
A =

.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

driven by the fact that higher-order assessments (e.g.,
all three-way joint assessments) have not been speci-
fied. At this point, one could ask whether performing
these assessments is worthwhile, or which assessment
should be gathered next.

Finally, in this paper we have analyzed the accuracy
of the independent, maximum-entropy, and analytic-
center approximations within a single probabilistic
and decision context. In future work, our simulation
procedure could also be used to test the accuracy of
these approximations across a wide range of poly-
topes. This research would seek to understand the
accuracy of the various approximations as the num-
ber of random variables is increased, as the number
of outcomes per random variable is increased, and
across different dependence structures. This would
help analysts understand the accuracy of the analytic-
center approximation, for example, in situations that
might arise in practice.
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Appendix B. Approximate Joint Distributions

Maximum Analytic Sample
Independent entropy center average

Event 1 (all wells wet) 000045 000383 000380 000396
Event 2 000204 000372 000320 000252
Event 3 000091 000209 000259 000251
Event 4 000414 000271 000273 000295
Event 5 000009 000078 000028 000028
Event 6 000042 000076 000051 000051
Event 7 000019 000043 000032 000030
Event 8 000085 000056 000065 000061
Event 9 000040 000019 000012 000011
Event 10 000181 000205 000236 000265
Event 11 000081 000017 000012 000012
Event 12 000368 000238 000264 000279
Event 13 000008 000004 000008 000009
Event 14 000037 000042 000050 000053
Event 15 000017 000003 000009 000009
Event 16 000075 000049 000067 000066
Event 17 000047 000044 000057 000065
Event 18 000212 000052 000061 000067
Event 19 000095 000195 000199 000186
Event 20 000431 000305 000324 000361
Event 21 000010 000009 000020 000021
Event 22 000044 000011 000032 000033
Event 23 000019 000040 000031 000031
Event 24 000088 000062 000073 000077
Event 25 000041 000004 000010 000010
Event 26 000188 000054 000061 000062
Event 27 000084 000030 000012 000011
Event 28 000383 000508 000427 000383
Event 29 000008 000001 000008 000008
Event 30 000039 000011 000032 000035
Event 31 000017 000006 000009 000009
Event 32 000078 000104 000080 000076
Event 33 000083 000207 000191 000168
Event 34 000379 000619 000774 000857
Event 35 000169 000117 000139 000157
Event 36 000770 000466 000389 000368
Event 37 000017 000042 000032 000031
Event 38 000078 000127 000088 000076
Event 39 000035 000024 000035 000036
Event 40 000158 000095 000129 000130
Event 41 000074 000013 000011 000011
Event 42 000336 000419 000421 000390
Event 43 000150 000011 000011 000011
Event 44 000683 000501 000376 000346
Event 45 000015 000003 000009 000009
Event 46 000069 000086 000084 000090
Event 47 000031 000002 000009 000009
Event 48 000140 000103 000136 000147
Event 49 000087 000037 000051 000051
Event 50 000395 000134 000073 000064
Event 51 000176 000171 000130 000134
Event 52 000801 000818 000779 000727
Event 53 000018 000008 000022 000023
Event 54 000081 000027 000044 000043
Event 55 000036 000035 000036 000037
Event 56 000164 000167 000182 000194

Appendix B. Continued

Maximum Analytic Sample
Independent entropy center average

Event 57 000077 000004 000010 000010
Event 58 000350 000173 000072 000061
Event 59 000156 000032 000011 000011
Event 60 000710 001673 001956 002029
Event 61 000016 000001 000008 000008
Event 62 000072 000035 000044 000044
Event 63 000032 000007 000009 000009
Event 64 (all wells dry) 000146 000343 000237 000219
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