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Summary
Swanson’s	 mean	 (SM)	 is	 heavily	 used	 within	 the	 oil	 and	 gas	
industry	to	approximate	continuous	probability	distributions	such	
as	the	log-normal.	In	this	paper,	we	document	the	errors	induced	
by	this	practice,	which,	as	we	show,	has	no	theoretical	justification	
for	any	distribution	other	 than	the	normal.	In	parallel,	we	review	
methods	to	discretize	continuous	distributions	and	compare	these	
methods	to	Monte	Carlo	(MC)	simulation.	We	demonstrate	that	the	
best	discretization	methods	have	an	accuracy	equivalent	to	that	of	
tens	of	thousands	of	MC	trials.

Introduction
Most	 decision	 or	 risk	 analyses	 include	 continuous	 random	 vari-
ables	 (e.g.,	 oil	 in	 place,	 oil	 price,	 or	 porosity).	 Analysts	 are	
frequently	 concerned	 with	 how	 to	 best	 structure,	 compute,	 and	
communicate	 decision	 models	 under	 these	 circumstances.	While	
decision	trees	are	well	suited	for	discrete	random	variables	(RVs)	
with	a	few	possibilities,	they	can	become	unmanageable	when	the	
number	of	outcomes	is	large.	For	example,	trees	may	become	too	
large	to	easily	display	or	the	large	number	of	endpoints	may	require	
too	many	evaluations	of	a	possibly	costly	 (to	evaluate)	objective	
function	(e.g.,	runs	of	a	reservoir-simulation	model).	The	question	
we	address	in	this	paper	is	how	one	should	include	continuous	RVs	
in	a	decision	tree	given	these	limitations.	

Two	 approximation	 methods,	 which	 are	 closely	 related,	 have	
been	 developed	 to	 address	 this	 problem:	 discretization	 and	 MC	
simulation.	 Specifically,	 suppose	 we	 are	 constructing	 a	 decision	
model	that	takes	as	an	input	the	continuous	RV	X (e.g.,	oil	in	place).	
Under	either	discretization	or	MC	simulation,	we	approximate	the	
continuous	probability-density	function	(PDF)	f(x),	or	the	cumula-
tive	distribution	function	(CDF)	F(x),	with	a	set	of	values	x Xi ∈ ,	
i	=	1,	2,	…,	N,	and	associated	probabilities	pi	≡	p(xi).	In	MC	simu-
lation,	N	is	generally	large	(in	the	thousands),	and	the	xi	are	drawn	
randomly	from	the	entire	support	of	X using	methods	such	as	the	
inverse	cumulative	method	(Clemen	and	Reilly	2001).	In	this	case,	
X	=	F–1(U),	where	F–1	is	the	inverse	CDF	and	U	is	uniformly	dis-
tributed	over	[0,	1].	The	inverse	cumulative	method	assures	that	X	
is	distributed	according	to	F.	Discretization	methods,	on	the	other	
hand,	comprise	only	a	few	points	(three	is	common),	but	seek	to	
choose	points	that	will	preserve	desired	properties	of	X.	The	most	
natural	 and	 common	 properties	 of	 interest	 are	 the	 raw	 (e.g.,	 the	
mean)	 and	 central	 moments	 of	 X	 (e.g.,	 variance,	 skewness,	 kur-
tosis).	As	 we	 discuss	 in	 the	 following,	 if	 an	 approximation	 fails	
to	preserve	the	moments	of	X,	it	is	unlikely	that	it	will	accurately	
preserve	the	moments	of	the	output	distribution	(Miller	and	Rice	
1983;	Smith	1993),	 including	 the	mean,	which	 are	of	 interest	 to	
decision	makers.	Because	the	moments	of	a	PDF	do	not	uniquely	
determine	the	underlying	PDF	(an	infinite	number	of	distributions	
have	 a	 mean	 of	 zero	 and	 a	 variance	 of	 unity,	 for	 example),	 the	
discretization	methods	discussed	in	this	paper,	and	used	throughout	
the	oil	 and	gas	 industry,	may	 fail	 to	match	particular	percentiles	
of	 the	 PDF	 or	 extreme	 values	 even	 though	 they	 match	 many	
moments.	This	important	and	underappreciated	distinction	means	
that	 calculating	 the	 probability	 of	 exceeding	 particular	 values	 of	

the	output	variable	(e.g.,	the	probability	of	exceeding	zero)	on	the	
basis	of	a	cumulative	distribution	that	comprises	several	discretized	
input	 uncertainties	 may	 not	 be	 justified.	We	 do	 not	 address	 this	
issue	here.	Rather,	our	goal	will	be	to	match	the	moments	of	the	
input	PDFs,	with	the	caution	that	this	process	is	designed	only	to	
estimate	the	moments	of	the	output	distribution.

Several	discretization	methods	are	in	common	use.	For	exam-
ple,	SM,	which	weights	the	10th,	50th,	and	90th	percentiles	of	F(x)	
by	0.30,	0.40,	0.30,	is	heavily	used	within	the	oil	and	gas	industry	
(Megill	 1984;	 Hurst	 et	 al.	 2000;	 Rose	 2001).	 However,	 SM	 is	
neither	the	only	nor,	as	we	shall	see,	the	best	choice.	

Interest	in	discretization	methods	within	the	oil	and	gas	industry	
has	recently	increased.	For	example,	Arild	et	al.	(2008)	compared	
the	 use	 of	 SM	 to	 MC	 simulation	 in	 the	 context	 of	 a	 value-of-
information	 problem.	 They	 demonstrated	 that	 the	 two	 methods	
yield	different	results,	but	they	were	unable	to	comment	on	which	
approach	 is	 closer	 to	 the	 true	value	of	 information	because	 their	
problem	 did	 not	 have	 an	 analytic	 (closed-form)	 solution.	 Prange	
et	 al.	 (2009)	 compared	 a	 numerical	 approximation	 method	 to	 a	
discretization	method	and	found	 that	 the	discretization	was	 inac-
curate.	 Thus,	 these	 two	 papers	 have	 suggested	 the	 use	 of	 MC	
simulation	instead	of	discretization.	Willigers	(2009),	on	the	other	
hand,	recommends	the	use	of	discretization	instead	of	MC	simula-
tion	to	reduce	the	number	of	computations	and	speed	the	analysis	
of	asset	portfolios.

This	 paper	 is	 organized	 as	 follows.	 In	 the	 next	 section,	 we	
review	the	theory	underlying	discrete	approximations	and	discuss	
the	accuracy	of	common	methods.	In	the	third	section,	we	discuss	
the	accuracy	of	discretization	methods	and	the	demonstrably	poor	
performance	 of	 SM.	 In	 the	 fourth	 section,	 we	 contrast	 the	 use	
of	 discrete	 approximations	 to	 MC	 simulation	 and	 demonstrate	
that	 the	 best	 discretization	 methods	 are	 equivalent	 to	 hundreds	
of	 thousands	 of	 MC	 trials.	We	 provide	 a	 simple	 example	 in	 the	
fifth	 section	 that	 demonstrates	 that	 different	 discretizations	yield	
different	value	estimates	and	possibly	different	recommendations	
for	action.	Finally,	 in	 the	sixth	section,	we	conclude	and	provide	
recommendations	for	practice.

Discrete Approximations: Methods and 
Shortcuts
Before	we	discuss	specific	discretization	methods,	we	begin	with	
a	 brief	 review	 and	 introduce	 the	 notation	 we	 use	 throughout	 the	
paper.	 The	 kth	 raw	 (or	 uncentered)	 moment	 of	 RV	 X	 with	 PDF	
f(x)	is

mk
k k

X
E X x f x x k= = =∫[ ] ( ) , , ,d 0 1 2 ,			. . . . . . . . . . . . . . . (1)

where	 E[-]	 is	 the	 expectation	 operator.	 The	 zeroth	 raw	 moment	
specifies	 that	 the	 probabilities	 must	 integrate	 (or	 sum)	 to	 unity.	
The	first	raw	moment	µ1	is	the	mean.	Raw	moments	measure	the	
distribution	 of	 an	 RV	 about	 the	 origin.	 Central	 moments,	 on	 the	
other	 hand,	 measure	 the	 distribution	 about	 the	 mean.	 (Central	
moments	 are	 simply	 raw	 moments	 of	 the	 transformed	 variable		
Y	=	X	–	µ1.)	The	kth	central	moment	of	X	is

m E X x f x x kk
k k

X
= − = − =∫[( ) ] ( ) ( ) , , ,m m1 1 0 1 2d .			 	. . . (2)

The	second	central	moment	is	the	variance	and	is	given	the	special	
symbol	2.
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There	is	a	one-to-one	relationship	between	the	raw	and	central	
moments.	 For	 example,	 if	 one	 knows	 the	 raw	 moments	 µk,	 the	
central	moments	can	be	found	as	follows	(Papoulis	1984):
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Hence,	 the	 second	 central	 moment,	 the	 variance,	 expressed	 in	
terms	of	the	raw	moments,	is	m E X E X2 2 1

2 2 2= − ≡ − ( )m m [ ] [ ] .
Two	normalized	central	moments,	skewness	and	kurtosis,	mea-

sure	other	properties	of	the	distribution.	Skewness	is	a	measure	of	
asymmetry	 and	 is	 given	 by	g3 3 2

3 2= −m m / .	 Kurtosis	 measures	 the	
distribution’s	 degree	 of	 “peakedness”	 or	 how	 thick	 its	 tails	 are.	
Kurtosis	is	defined	as	g4 4 2

2 3= −−m m .	The	minus	three	normalizes	
kurtosis	 relative	 to	 the	 normal	 distribution,	 which	 has	 a	 kurtosis	
of	three.

The Motivation for Moments.	 Suppose	 we	 are	 interested	 in	 a	
value	 function	 v(x),	 which	 is	 a	 function	 of	 an	 RV	 X. This	 value	
function	might	be	net	present	value	(NPV)	or	ultimate	hydrocar-
bon	 recovery.	 If	 this	 value	 function	 is	 sufficiently	 differentiable,	
such	that	it	can	be	approximated	by	a	polynomial	P(x)	of	degree	
N,	then	we	have
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for	the	weights	wk.	[This	discussion	closely	follows	Smith	(1993).]	
The	mean,	or	expected	value	of	v(x)	is	given	by
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Thus,	 the	 expected	 value	 of	 v(x)	 is	 an	 expansion	 of	 the	 raw	
moments	of	X.	Therefore,	if	one	wants	to	accurately	compute	the	
expected	value	of	the	value	function	(e.g.,	expected	NPV),	all	the	
moments	of	f(x)	must	be	represented	accurately.	It	is	not	sufficient,	
as	is	sometimes	assumed,	to	accurately	reflect	only	the	mean	value	
of	input	uncertainties.	To	make	this	concrete,	suppose	that	v(x)	=	x2	

and	that	X	is	a	normal	RV	with	zero	mean	and	unit	variance.	The	
expected	value	of	v(x)	 is	equal	 to	unity,	while	v	 evaluated	at	 the	
expectation	 is	 equal	 to	 zero.	 Our	 goal	 then	 will	 be	 to	 develop	
discretization	methods	 that	preserve	 the	moments	of	 input	distri-
butions.	Before	we	discuss	particular	discretizations,	however,	we	
will	formally	state	the	approximation	problem.

Formal Statement of Approximation Problem.	 Given	 a	 PDF	
f(x)	and	function	(x),	we	wish	to	approximate	a	definite	integral	
with	a	finite	sum,

f x x x p x
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by	choosing	values	xi	and	weights	(or	probabilities)	pi.	
In	other	words,	we	seek	to	approximate	the	PDF	with	a	discrete	

probability	mass	function	(PMF).	This	procedure,	originally	devel-
oped	by	Gauss	in	the	nineteenth	century	(Gauss	1866),	is	known	as	
Gaussian	quadrature.	If		is	a	polynomial	then	the	approximation	
in	Eq.	6	holds	with	equality	(Davis	and	Rabinowitz	1984).	

In	 this	paper,	we	analyze	 the	particular	case	( )x xi i
k= ,	where		

k	=	0,	1,	2,	…	represents	the	kth	raw	moment	of	X.	Thus,	we	have
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for	a	set	of	probabilities	pi	and	values	xi;	our	challenge	is	to	find	
these	parameters.	As	an	example,	consider	k	=	0,	in	which	case	Eq.	7	
requires	that	the	discrete	probabilities	sum	to	unity.	When	k	=	1,	Eq.	
7	requires	that	we	match	E[X],	or	the	mean,	and	so	on.	This	appli-
cation	of	Gaussian	quadrature	 is	referred	to	as	moment matching 

(Miller	 and	 Rice	 1983;	 Smith	 1993).	An	 approximation	 with	 N	
points	can	match	2N	moments	of	X,	including	the	zeroth	moment	
(Stroud	and	Secrest	1966;	Miller	and	Rice	1983).	For	example,	a	
three-point	approximation	can	match	 the	zeroth	 through	 the	fifth	
moment	of	X.	This	remarkable	fact	enables	one	to	preserve	many	
characteristics	(mean,	variance,	skewness,	kurtosis)	of	commonly	
used	distributions	with	a	limited	number	of	points,	assuming	these	
moments	are	finite.	

Gaussian	 quadrature	 provides	 both	 an	 organizing	 framework	
for	 understanding	 the	 objective	 of	 discretization	 and	 a	 computa-
tional	method	 for	 determining	 the	best	 approximation.	However,	
many	 commonly	 used	 approximations	 fail	 to	 match	 some	 or	 all	
of	 the	moments	of	X.	We	discuss	 the	differing	approaches	 in	 the	
following	subsections,	which	we	divide	into	general	methods	and	
shortcuts.	The	general	methods	are	intended	for	use	on	a	case-by-
case	basis	 and	are	 tailored	 to	 the	underlying	PDF.	The	 shortcuts	
are	nonparametric	in	that	they	are	discretizations	that	are	applied	
to	any	PDF,	irrespective	of	its	shape.	Typically,	these	are	discreti-
zations	that	were	found	to	work	reasonably	well	over	some	set	of	
commonly	encountered	PDFs	but	are	applied	more	generally	than	
might	be	warranted.

General Discretization Methods.	In	this	subsection,	we	describe	
three	 general	 discretization	 methods:	 moment	 matching,	 bracket	
median,	and	bracket	mean.

Moment Matching. The	 most	 accurate	 general	 method	 for	
matching	moments	is,	of	course,	Gaussian	quadrature	or	moment	
matching	 itself.	 (While	 we	 are	 using	 a	 special	 case	 of	 Gaussian	
quadrature,	 where	 ( )x xi i

k= ,	 we	 will	 use	 the	 terms	 moment	
matching	and	Gaussian	quadrature	interchangeably.)	This	approach	
can	 be	 applied	 to	 any	 PDF	 for	 which	 the	 moments	 are	 known.	
Quadrature	 rules	 have	 been	 calculated	 and	 published	 for	 several	
commonly	 encountered	 PDF	 families.	 For	 example,	 Miller	 and	
Rice	 (1983)	 presented	 the	 two-,	 three-,	 and	 four-point	 Gaussian	
quadratures	 for	 the	 standard	 uniform,	 normal,	 and	 exponential	
distributions.	We	repeat	these	results	in	Table 1. [Miller	and	Rice	
provided	their	results	to	six	significant	figures,	but	we	round	these	
to	 three	 significant	 figures	 to	 facilitate	 communication.	 Readers	
requiring	greater	accuracy	should	consult	Miller	and	Rice	(1983).]	
However,	 instead	 of	 providing	 the	 values	 xi	we	 provide	 the	 per-
centiles	of	the	excess	distribution	function	(EDF),	also	called	the	
complementary	CDF,	which	is	used	more	frequently	than	the	CDF	
in	oil	 and	gas	 settings.	These	percentiles	 are	i	≡	G(xi)	×	100	=	
[1	–	F(xi)]	×	100.	

We	 summarize	 an	 approximation	 as	 the	 set	 of	 probabilities	
and	 percentiles	 (pi; i).	 As	 shorthand,	 we	 will	 refer	 to	 the	 Zth	
percentile	of	the	EDF	as	the	PZ.	For	example,	the	50th	percentile	
is	the	P50.	The	two-point	approximation	of	the	normal	distribution	
may	 be	 summarized	 as	 (0.500,	 0.500;	 P84.1,	 P15.9).	 The	 three-
point	approximation	of	the	normal	is	(0.167,	0.667,	0.167;	P95.8,	
P50.0,	 P4.2).	This	 simple	 approximation	 will	 match	 the	 first	 six	
moments	of	the	normal	distribution,	including	the	requirement	that	
the	probabilities	sum	to	unity.	 It	may	help	 the	 reader	 to	 think	of	
the	discretizations	in	Table	1	as	probability	trees.	For	example,	the	
three-point	approximation	for	the	normal	is	shown	in	Fig. 1.

In	 the	 case	 of	 the	 uniform	 distribution,	 Gaussian	 quadrature	
does	 not	 result	 in	 equal	 weights	 on	 uniformly	 dispersed	 values.	
For	example,	one	might	think	that	an	equal	weighting	of	the	P75,	
P50,	P25	would	perfectly	match	the	uniform	distribution	because	
both	the	values	and	the	probabilities	have	been	divided	uniformly.	
In	fact,	this	approximation	underestimates	the	variance	by	50%.	

Bracket Median and Bracket Mean (or Equal Areas). In	two	
intuitively	appealing	methods,	bracket	median	(Clemen	and	Reilly	
2001)	and	bracket	mean	(McNamee	and	Celona	1990),	the	excess	
distribution	G(x)	is	divided	horizontally	into	N	intervals,	as	shown	
in	Fig. 2.

It	 is	 common	 for	 the	 intervals	 to	 be	 of	 unequal	 size	 in	 the	
bracket-mean	 approach	 and	 of	 equal	 size	 in	 the	 bracket-median	
approach,	although	 in	neither	case	 is	 it	 required.	The	probability	
that	X	will	be	in	Interval	i	is	Gi	–	Gi-1.	Given	that	X	is	in	Interval	
i,	we	summarize	the	conditional	distribution	of	X	(conditional	on	X	
being	within	the	interval)	by	a	single	number.	Bracket	median	takes	
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this	number	to	be	the	median,	while	bracket	mean	uses	the	mean.	
Because	these	conditional	distributions	are	generally	skewed,	the	
median	and	the	mean	differ	and	the	two	approaches	may	result	in	
(very)	 different	 discretizations.	 For	 example,	 applying	 the	 three-
point	bracket-median	and	bracket-mean	methods	with	intervals	of	
0.25,	0.50,	0.25	to	the	normal	distribution	yields	discretizations	of	
(0.25,	0.50,	0.25;	P87.5,	P50.0,	P12.5)	and	(0.25,	0.50,	0.25;	P89.8,	

P50.0,	P10.2),	respectively.	The	difference	between	the	approaches	
is	greater	for	skewed	distributions	such	as	the	log-normal.

The	 advantage	 of	 the	 bracket-median	 approach	 is	 that	 the	
median	of	each	 interval	 is	 simply	 that	 interval’s	midpoint,	Gi-1	+	
(Gi – Gi-1)/2,	which	can	be	read	directly	off	of	the	excess	distribu-
tion,	whereas,	 the	mean	of	each	 interval	must	be	calculated.	For	
certain	distributions,	such	as	the	normal,	this	calculation	is	straight-
forward.	 For	 other	 distributions,	 including	 subjectively	 assessed	
distributions	 that	 may	 not	 belong	 to	 any	 family,	 this	 calculation	
may	be	complex.	However,	there	is	a	graphical	method	to	estimate	
the	interval	means	that	gives	bracket	mean	its	more	common	name	
of	equal	areas.	As	shown	in	Fig.	2,	the	mean	of	each	Interval	i	is	
the	point	at	which	the	area	Ai	to	the	left	and	above	the	excess	dis-
tribution	is	equal	to	the	area	below	and	to	the	right.	The	interested	
reader	should	see	McNamee	and	Celona	(1991,	pp.	18–21)	for	a	
proof	of	this	fact.	In	the	first	author’s	experience,	individuals	are	
skilled	at	finding	these	points	by	eye.

Discretization Shortcuts.	The	 general	 methods	 discussed	 previ-
ously	can	be	tailored	to	the	shape	of	the	distribution.	For	example,	
the	intervals	in	equal	areas	need	not	be	symmetric	and	extra	atten-
tion	can	be	placed	on	particular	portions	of	the	distribution,	such	as	
the	tails.	Yet,	this	flexibility	comes	at	a	cost—one	must	compute	the	

TABLE 1—TWO-, THREE-, AND FOUR-POINT GAUSSIAN QUADRATURE FORMULAE FOR 
COMMON DISTRIBUTIONS 

Distribution Two Points Three Points Four Points 
pi i pi i pi i 

Uniform 0.500 78.9 0.278 88.7 0.174 93.1 

0.500 21.1 0.444 50.0 0.326 67.0 

  0.278 11.3 0.326 33.0 

    0.174 6.9

Normal 0.500 84.1 0.167 95.8 0.046 99.0 

0.500 15.9 0.667 50.0 0.454 77.1 

  0.167 4.2 0.454 22.9 

    0.046 1.0 

Exponential 0.841 55.7 0.711 66.0 0.603 96.8 

0.146 3.3 0.279 10.1 0.357 17.5 

  0.010 0.2 0.039 1.1 

    0.001 0.01 

f (x  1 = )

0 ≤ x ≤  1 

π= − 22/1 1
2f x E x p x

–∞ ≤ x ≤ ∞ 

= −( ) [ ]f x E x p x  

x ≥  0 

P95.8

0.167

P50.0

0.667

0.167

P4.2

Fig. 1—Three-point Gaussian quadrature for the normal dis-
tribution.
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appropriate	discretization.	For	 this	reason,	several	shortcut	meth-
ods	have	been	developed.	In	what	follows,	we	discuss	the	approxi-
mations	in	the	order	in	which	they	were	originally	proposed.

Pearson	and	Tukey	(1965)	developed	a	 three-point	discretiza-
tion	 meant	 to	 closely	 approximate	 the	 mean	 of	 common	 PDFs,	
including	the	normal,	beta,	gamma,	inverse	gamma,	and	Student’s	
t	 distributions	 (the	 uniform	 was	 not	 included).	 Their	 three-point	
approximation	of	the	mean	is	(0.185,	0.630,	0.185;	P95,	P50,	P5),	
which	was	 found	 to	work	well	except	 for	distributions	 that	were	
highly	skewed.	Pearson	and	Tukey	did	not	recommend	this	approx-
imation	for	higher	moments	and	instead	provided	a	more	complex	
approximation	 for	 the	 standard	 deviation.	 However,	 Keefer	 and	
Bodily	(1983),	on	the	basis	of	work	by	Keefer	and	Pollock	(1980)	
and	their	own	supporting	analysis,	suggested	treating	the	Pearson-
Tukey	approximation	as	 a	 complete	PMF	and	 referred	 to	 this	 as	
extended	Pearson-Tukey	(EPT).

The	equal-areas	method	discussed	previously	was	developed	by	
Jim	Matheson	and	his	colleagues	at	the	Stanford	Research	Institute	
(SRI)	between	the	 late	1960s	and	the	early	1970s	(personal	com-
munication	with	Jim	Matheson	and	Peter	McNamee).	Application	
of	this	method	to	the	normal	distribution	produces	an	approximation	
of	(0.25,	0.50,	0.25;	P89.8,	P50,	P10.2).	On	the	basis	of	this,	SRI	
began	using	a	shortcut	of	weighting	the	P90,	P50,	P10	by	0.25,	0.50,	
0.25,	which	is	sometimes	referred	to	at	the	25-50-25	approximation.	
This	method	was	 then	heavily	used	 and	popularized	by	Strategic	
Decisions	Group	(SDG),	which	was	 founded	by	 individuals	 from	
SRI’s	decision	analysis	group.	SDG	trained	hundreds	of	oil	and	gas	
professionals	in	decision	analysis	methods	and	helped	to	establish	
existing	decision	analysis	programs	at	several	major	corporations,	
including	Chevron;	this	explains	the	use	of	25-50-25	in	oil	and	gas	
settings.	The	shortcut	is	described	in	McNamee	and	Celona	(1990,	
pp.	32–33))	and	has	come	to	be	known	as	the	McNamee	and	Celona	
shortcut	 (MCS).	 McNamee	 and	 Celona,	 SDG	 consultants	 at	 the	
time,	cautioned	that	this	shortcut	should	be	used	only	in	the	early	
stages	of	analyzing	a	decision	and	that	one	needs	to	carefully	assess	
the	distribution	and	develop	a	full	discretization	(using	equal	areas)	
“more	 carefully	 later	 on!	 [emphasis	 in	 original]”	 (McNamee	 and	
Celona	1990).	Over	time,	this	guidance	has	been	widely	forgotten,	
and	today	MCS	is	commonly	applied	without	regard	for	the	shape	
of	the	underlying	distribution	and	is	not	followed	with	a	secondary	
and	more	careful	assessment	and	discretization.	

While	 working	 for	 Exxon,	 Roy	 Swanson,	 in	 a	 1972	 internal	
memo,	 proposed	 approximating	 mean	 reserves	 by	 weighting	 the	
P90,	P50,	P10	of	the	reserves	EDF	by	0.30,	0.40,	0.30	(Megill	1984	
in	Appendix	B;	Hurst	et	al.	2000).	Following	the	preceding	discus-
sion,	we	will	refer	 to	this	as	a	30-40-30	weighting.	According	to	
Megill	(1984),	Swanson	arrived	at	this	rule	empirically	and	found	
that	 it	 reasonably	 approximated	 the	 mean	 of	 modestly	 skewed	
distributions.	Like	Pearson	and	Tukey	before	him,	Swanson	(appar-
ently)	did	not	propose	using	his	approximation	to	estimate	higher	
moments	 or	 as	 a	 complete	 PMF.	 However,	 Keefer	 and	 Bodily	
(1983)	proposed	 treating	Swanson’s	30-40-30	rule	as	a	complete	
PMF	and	referred	 to	 it	as	extended	Swanson-Megill	 (ESM).	The	
general	use	of	ESM,	especially	in	the	case	of	the	log-normal,	has	
been	advocated	by	Pete	Rose	and	his	colleagues	at	Rose	&	Asso-
ciates	(Hurst	et	al.	2000;	Rose	2001).	As	we	will	see	 later,	ESM	
is	close	to	a	Gaussian	quadrature	for	 the	normal	distribution	that	
matches	 the	mean	and	variance.	However,	when	directly	applied	
to	 a	 log-normal	 distribution,	 ESM	 fails	 to	 match	 the	 mean	 and	
significantly underestimates	the	variance	and	the	skewness.

Before	 discussing	 the	 other	 discretization	 methods,	 we	 pause	
briefly	so	that	we	can	emphasize	the	difference	between	developing	

an	approximation	of	the	mean	and	an	approximation	of	the	PDF.	
A	mean	does	not	uniquely	determine	a	PDF;	there	are	an	infinite	
number	 of	 PDFs	 with	 the	 mean	 of	 5,	 for	 example.	 Therefore,	
one	 could	 very	 easily	 find	 an	 approximation	 that	 matches	 the	
mean,	 but	 fails	 to	 faithfully	 represent	 the	 underlying	 PDF.	 This	
is	 the	 case	with	SM.	Swanson	did	not	 suggest	using	his	method	
to	approximate	the	PDF	of	reserves;	he	only	suggested	that	 it	be	
used	to	approximate	the	mean.	However,	approximations	that	work	
well	 only	 for	 the	 mean	 are	 not	 particularly	 useful	 in	 most	 deci-
sion	analyses.	Using	a	discretization	 in	 a	probability	or	decision	
tree	 as	 shown	 in	 Fig.	 1	 implicitly	 assumes	 that	 it	 is	 an	 accurate	
representation	 of	 the	 PDF,	 not	 just	 the	 mean	 of	 that	 PDF.	Thus,	
strictly	speaking,	Swanson’s	method	cannot	be	used	in	a	decision	
tree	because	it	was	intended	merely	to	be	a	method	for	estimating	
the	 mean	 of	 a	 distribution.	When	 Swanson’s	 values	 (0.30,	 0.40,	
0.30;	 P90,	 P50,	 P10)	 are	 used	 in	 a	 decision	 tree,	 it	 is	 really	 an	
application	of	ESM	that	describes	a	PMF.

Returning	 to	 our	 discussion	 of	 the	 various	 shortcuts,	 Miller	
and	Rice	 (1983)	 introduced	 the	use	of	Gaussian	quadrature	 to	 the	
decision	 analysis	 literature.	 As	 detailed	 earlier,	 this	 method	 can	
exactly	match	as	many	moments	of	any	PDF	as	desired,	as	long	as	
the	moments	are	finite.	However,	in	practice	it	would	be	helpful	to	
have	these	discretizations	precalculated.	This	is	possible	in	the	case	
of	known	PDF	families,	as	shown	in	Table	1.	When	one	is	dealing	
with	a	distribution	that	is	not	from	a	known	family	(as	might	happen	
if	 the	 distribution	 is	 directly	 assessed	 by	 an	 expert,	 for	 example),	
Miller	 and	Rice	proposed	 several	generic	discretizations	based	on	
Gaussian	 quadrature.	 For	 a	 three-point	 approximation,	 Miller	 and	
Rice	proposed	weighting	the	P91.5,	P50.0,	and	P8.5	by	0.248,	0.504,	
0.248.	 This	 approximation	 has	 become	 known	 as	 the	 Miller-Rice	
one	step	(MRO).	Notice	that	MRO	is	very	close	to	the	bracket-mean	
approximation	applied	to	a	normal	distribution	and	MCS.	This	cor-
respondence	further	supported	MCS	and	SDG’s	use	of	it.

D’Errico	and	Zaino	(1988)	and	Zaino	and	D’Errico	(1989)	used	
Taguchi’s	method	(Taguchi	1978)	to	develop	two	approximations.	
The	first	equally	weighs	the	P89,	P50,	P11,	which	we	refer	to	as	the	
Zaino-D’Errico-Taguchi	(ZDT)	approximation.	The	second	applies	
the	three-point	Gaussian	quadrature	formula	for	the	normal	distri-
bution	(0.167,	0.667,	0.167;	P95.8,	P50.0,	P4.2),	displayed	in	Table	
1,	more	generally.	We	will	refer	to	this	approximation	as	GQN.	We	
summarize	each	of	the	discretization	shortcuts	in	Table 2.

Moment Matching With Fixed Values or Fixed Probabilities.	
After	 many	 years	 of	 use,	 approximations	 with	 values	 fixed	 at	
the	 P90,	 P50,	 P10	 (MCS	 and	 ESM)	 or	 weightings	 of	 25-50-25	
(MCS)	or	30-40-30	(ESM)	have	become	common.	Yet,	 the	ESM	
and	 MCS	 shortcuts	 are	 not	 distribution	 specific	 and,	 therefore,	
may	induce	unnecessary	errors.	In	this	subsection,	in	an	effort	to	
improve	 practice,	 we	 apply	 moment	 matching	 to	 develop	 rules	
for	(a)	weighting	the	P90,	P50,	and	P10	and	(b)	values	with	fixed	
weights	of	25-50-25	or	30-40-30.	We	consider	 the	uniform,	nor-
mal,	exponential,	and	triangular	distributions.	These	results	appear	
in	Tables 3 through 5.	

As	 seen	 in	 Table	 3,	 the	 weights	 for	 the	 normal	 are	 nearly	
identical	 to	 ESM.	As	 such,	 ESM	 almost	 matches	 the	 mean	 and	
variance	 of	 a	 normal	 distribution.	 The	 listed	 triangular	 results	
are	 for	a	mode,	c,	of	0.5.	However,	 the	weights	are	a	very	weak	
function	of	c.	For	example,	when	c	=	0.1	the	weights	are	(0.277,	
0.451,	 0.272).	 Thus,	 the	 values	 listed	 in	 Table	 3	 should	 provide	
satisfactory	results	in	most	situations.

It	 is	 not	 always	possible	 to	 fix	 the	values	 and	 find	 a	 feasible	
solution	(Smith	1993).	For	example,	a	weighting	of	a	log-normal’s	

TABLE 2—THREE-POINT DISCRETIZATION SHORTCUTS 

EPT MCS ESM MRO GQN ZDT 

pi i pi i pi i pi i pi i pi i 

0.185 95.0 0.250 90.0 0.300 90.0 0.248 91.5 0.167 95.8 0.333 89.0 
0.630 50.0 0.5000 50.0 0.400 50.0 0.504 50.0 0.667 50.0 0.333 50.0 
0.185 5.0 0.250 10.0 0.300 10.0 0.248 8.5 0.167 4.2 0.333 11.0 
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P90,	P50,	P10	that	will	simultaneously	match	the	mean	and	vari-
ance	is	very	often	impossible	to	find	if	the	underlying	distribution	
is	 even	 modestly	 skewed.	 This	 underscores	 the	 futility	 of	 the	
common	 practice	 of	 applying	 ESM	 or	 MCS	 without	 regard	 for	
the	underlying	distribution	or,	 indeed,	 instead	of	 considering	 the	
nature	of	that	distribution.	To	remedy	this,	in	Table 6	we	present	
several	approximations	for	the	log-normal	with	any	mean	but	the	
listed	standard	deviation	(in	terms	of	ln	X),	using	four	points.	These	
approximations	 will	 match	 the	 mean	 and	 variance	 when	 applied	
directly	to	log-normal	distributions	with	the	stated	standard	devia-
tion;	 as	we	discuss	more	 fully	 later,	matching	 the	 skewness	of	a	
log-normal	is	very	difficult.	The	values	that	we	have	found	to	work	
well	 are	 the	 P90,	 P50,	 P5,	 and	 the	 mode	 (most	 likely	 value).	 If	
X is	log-normally	distributed,	then	the	mode	of	X	 is	EXP[µ – ],	
where	m	=	E[ln	X]	and	 2	=	E[((ln	X)	–	m)2].

Accuracy of Discretization Methods
Given	the	variety	of	discretization	methods,	the	question	naturally	
arises	 as	 to	 which	 approximation	 is	 best.	 Or,	 perhaps	 more	 cor-
rectly,	in	which	situations	do	the	various	approximations	perform	
well	or	poorly?	When	the	PDF	is	from	a	family	given	in	Table	1	
(or	Tables	3–6),	 the	Gaussian	quadrature	formulas	exactly	match	
the	first	2N	underlying	moments	of	the	original	PDF,	by	definition.	
Thus,	they	can	be	taken	as	the	highest	standard	of	accuracy.

Miller	 and	 Rice	 (1983)	 proved	 that	 equal	 areas	 will	 always	
underestimate	the	even	moments	of	the	original	distribution.	This	
occurs	because	xk	is	convex	when	k	is	even	and,	by	Jensen’s	inequal-
ity	(E[v(X)]	≥	v(E[X]),	if	v	is	a	convex	function.),	the	expectation	

of	a	convex	function	will	exceed	the	value	of	the	function	evalu-
ated	at	 the	expectation.	 In	 the	case	of	odd	k,	 the	direction	of	 the	
error	 is	more	difficult	 to	sign.	 If	x	 is	positive	 (negative)	 then	 the	
odd	 moments	 will	 be	 underestimated	 (overestimated),	 since	 xk	
is	 convex	 (concave).	Thus,	 direct	 application	of	 equal	 areas	 to	 a	
log-normal	 distribution	 (which	 cannot	 take	 negative	 values)	 will	
underestimate	all	moments.	

Keefer	 and	 Bodily	 (1983)	 tested	 EPT	 and	 ESM	 (among	 oth-
ers)	across	a	range	of	beta	distributions,	which	can	assume	a	wide	
variety	of	shapes	and	 thus	higher	moments.	They	concluded	 that	
EPT	is	the	“clear	winner.”	Both	EPT	and	ESM	approximated	the	
mean	reasonably	well;	the	average	(maximum)	errors	were	0.02%	
(0.07%)	and	0.05%	(0.33%)	for	EPT	and	ESM,	respectively.	How-
ever,	the	two	approaches	differed	in	their	ability	to	approximate	the	
variance.	The	average	(maximum)	errors	were	0.46%	(–1.6%)	and	
2.7%	(11.1%).	Keefer	(1994)	extended	the	analysis	of	Keefer	and	
Bodily	(1983)	by	analyzing	the	accuracy	of	MCS,	MRO,	GQN,	and	
ZDT	across	a	range	of	beta	distributions.	In	terms	of	estimating	the	
mean	and	variance,	he	found	that	EPT	slightly	outperformed	GQN,	
and	that	they	both	dominated	ESM,	MRO,	MCS,	and	ZDT.

Swanson’s (Inaccurate) Mean.	Given	the	widespread	use	of	ESM	
in	 the	 oil	 and	 gas	 industry,	 and	 the	 fact	 that	 it	 is	 being	 used	 as	
intended,	which	is	not	 the	case	for	MCS,	it	seems	appropriate	to	
scrutinize	its	accuracy.	(The	reader	should	bear	in	mind	that	MCS	
was	 never	 recommended	 as	 a	 final	 approximation,	 as	 ESM	 has	
been.)	 The	 studies	 discussed	 in	 the	 preceding	 demonstrated	 the	
rule’s	 inability	 to	 accurately	 approximate	 the	 variance	 of	 many	

TABLE 3—THREE-POINT MOMENT-MATCHING WEIGHTS FOR P90, P50, P10 VALUES 

Uniform Normal Exponential Triangular* 
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 372.0 564.0 403.0 062.0

 454.0 571.0 293.0 084.0

 372.0 063.0 403.0 062.0
*Note: Triangular discretization is a function of c, but this relationship is weak enough to ignore. 

)

TABLE 4—THREE-POINT MOMENT-MATCHING VALUES 
FOR 25-50-25 WEIGHTS (SAME PDFs AS TABLE 3) 

Uniform Normal Exponential Triangular 

P75.0 P92.1 P93.3 P78.9 
P62.1 P50.0 P44.6 P50.0 
P0.9 P7.9 P11.2 P21.1 

TABLE 5—THREE-POINT MOMENT-MATCHING VALUES 
FOR 30-40-30 WEIGHTS (SAME PDFs AS TABLE 3) 

Uniform Normal Exponential Triangular 

P74.9 P90.2 P91.8 P76.4 
P64.0 P50.0 P42.3 P50.0 
P6.5 P9.8 P9.5 P23.6 

TABLE 6—REPRESENTATIVE FOUR-POINT DISCRETIZATIONS FOR LOG-NORMAL 

σ = .25 σ = .50 σ = .75 σ = 1.0 
γ3 = 0.78 γ3 = 1.75 γ3 = 3.26 γ3 = 6.18 

pi αi pi αi pi αi pi αi 

0.203 90.0 0.151 90.0 0.186 90.0 0.436 90.0 
0.288 59.9 0.265 69.1 0.235 77.3 0.274 84.1 
0.303 50.0 0.378 50.0 0.357 50.0 0.017 50.0 
0.206 5.0 0.206 5.0 0.222 5.0 0.272 5.0 
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distributions.	 In	 this	 section,	 we	 more	 carefully	 analyze	 the	 use	
of	 ESM	 to	 approximate	 log-normal	 distributions;	 since	 its	 incep-
tion,	ESM	has	been	used	to	summarize	reserves	distributions,	and	
reserves	are	widely	held	to	be	log-normally	distributed	(Rose	2001).	
Likewise,	Rose	has	advocated	the	use	of	ESM	specifically	for	use	
with	log-normal	distributions	(Rose	2001	in	Appendix	B).

Megill	(1984)	directly	applies	ESM	to	the	log-normal	and	finds	
that	 ESM	 underestimates	 the	 mean	 by	 approximately	 10%	 for	
modestly	skewed	distributions,	which	he	associates	with	“typical	
prospect	ranges.”	However,	he	also	finds	that	ESM	underestimates	
the	mean	by	45%	for	more-skewed	distributions,	which	he	associ-
ates	 with	 “typical	 basin-play	 ranges	 for	 field	 size	 distributions.”	
Megill	 concludes	 that	 “Swanson’s	 rule	 should	 not	 be	 applied	 to	
obtain	the	mean	of	play	or	basin	assessments.”	We	extend	Megill’s	
analysis	in	Fig. 3,	which	plots	the	error	in	ESM’s	estimate	of	the	
mean,	variance,	and	skewness	for	a	log-normal	distribution,	against	
the	 ratio	 of	 the	 P10	 to	 the	 P50,	 which	 Megill	 intended	 to	 be	 a	
measure	of	 skewness.	As	Megill	 stated,	ESM	underestimates	 the	
mean	by	up	to	45%	in	this	example.	What	Megill	did	not	mention	
is	 that	 it	also	underestimates	 the	variance	by	80%	for	 the	typical	
prospect	range	and	by	100%	for	more-skewed	distributions.	ESM’s	
estimation	of	the	skewness	is	even	worse.	

Rose	(2001)	supports	his	use	of	ESM	by	arguing	that	reserves	
above	the	P1	of	a	log-normal	occur	with	much	less	than	a	1%	fre-
quency,	and	therefore	the	log-normal	should	be	truncated	above	this	
point.	Doing	so	reduces	skewness	and	does	improve	the	accuracy	of	
ESM.	However,	Rose	supports	his	argument	by	analyzing	only	the	
mean	and	examining	a	single	log-normal	distribution	with	a	mean	
of	 15.1	 and	 a	 standard	 deviation	 of	 28.2—implying	 a	 skewness	
of	3.9.	 In	 this	case,	ESM	underestimates	 the	 true	mean	by	1.5%.	
However,	it	also	underestimates	the	variance	by	59%	and	the	skew-
ness	by	78%.	Furthermore,	under	a	different	truncated	log-normal	
distribution	with	a	skewness	of	4.9,	ESM	underestimates	the	mean	
by	10%,	the	variance	by	77%,	and	the	skewness	by	83%.

SM	 can	 be	 directly	 applied	 to	 log-normal	 distributions	 by	
applying	 it	 to	 the	 logarithm	of	X,	 instead	of	directly	 to	X.	 If	X	 is	
log-normally	distributed,	then	ln	X	is	normally	distributed	and	the	
moments	of	X	are	functions	only	of	the	mean	µ	and	variance	 2	of	
ln	X.	The	equations	for	the	first	four	moments	of	X	appear	below:

m m 1
1
2

2( )X = + exp 			. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

m X2
2 22 1( ) = +    −( )exp expm   		 	. . . . . . . . . . . . . . . . . (9)

g  3
2 2 1 2

2 1( ) [ ] [ ]
/

X = +( ) −( )exp exp 	.		. . . . . . . . . . . . . . . . . (10)

g   4
2 2 24 2 3 3 2 6( )X =   +   +   −exp exp exp .		 	. . . . . . (11)

To	use	SM,	we	would	simply	determine	m	and	 2	by	applying	
the	 30-40-30	 approximation	 to	 ln	X,	 which	 is	 normal.	 Substitut-
ing	 these	 values	 into	 Eqs.	 8	 through	 11	 would	 almost	 perfectly	
match	 the	 first	 four	 moments	 of	 X,	 which	 is	 log-normal.	 This	
approach	would	 reduce	all	 the	errors	 in	Fig.	3	 to	zero.	This	 log-
SM	 approximation	 is	 a	 significant	 improvement	 over	 SM	 and	 is	
only	slightly	more	complicated—requiring	the	use	of	a	logarithm	
and	of	an	exponential.	

If	we	want	 to	 truncate	 the	 log-normal	distribution	at,	 say,	 the	
P1,	 we	 simply	 need	 to	 truncate	 the	 underlying	 normal	 distribu-
tion	at	the	P1,	which	is	elementary.	Then	we	can	find	a	Gaussian	
quadrature	for	 this	 truncated	normal.	For	example,	 if	we	want	 to	
truncate	the	log-normal	at	the	P1,	a	Gaussian	quadrature	of	(0.32,	
0.37,	 0.31;	P89.1,	P50,	P9.9)	 of	 the	original	 untruncated	normal	
will	 exactly	 match	 the	 first	 three	 moments	 of	 the	 normal	 and,	
therefore,	 the	 log-normal	distribution.	This	approximation	would	
reduce	all	of	the	errors	in	Rose’s	(2001)	example	to	zero.

Why Not Just Simulate?
Thus	far,	we	have	compared	discretization	methods	among	them-
selves	and	found	that	some,	such	as	ESM	and	naïve	uses	of	MCS,	
produce	significant	errors.	One	may	wonder	then,	given	the	wide-
spread	availability	and	use	of	MC	methods,	why	use	discretization	
at	all?	(As	one	analyst	argued,	“After	all,	my	Monte	Carlo	software	
package	includes	the	log-normal	distribution.”)	We	must	remember	
that	MC	is	also	an	approximation.	Discretization	methods	induce	
approximation error,	while	MC	methods	include	sampling error.	
The	 relevant	 question	 is	 whether	 or	 not	 MC	 is	 more	 accurate	
than	 discretization	 and	 which	 situations	 lend	 themselves	 to	 each	
method.	To	address	this,	this	section	offers	some	reasons	as	to	why	
one	may	prefer	to	use	discretization	rather	than	simulation.	More	
importantly,	we	determine	how	many	MC	samples	are	required	to	
achieve	the	same	accuracy	as	each	discretization	method.	

Modeling Difficulties.	From	a	modeling	perspective,	MC	simula-
tion	is	not	easy	to	implement	in	situations	that	include	downstream	
decisions	or	options.	A	generic	example	appears	in	Fig. 4.	In	this	
case,	 a	 decision	 D1	 is	 made	 at	 the	 beginning	 of	 Stage	 1.	 Then,	
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a	 possibly	 continuous	 uncertainty	 X	 is	 revealed,	 yielding	 a	 par-
ticular	value	x.	At	the	start	of	Stage	2,	decision	D2	is	made,	with	
knowledge	of	D1	and	x.	Then,	the	possibly	continuous	uncertainty	
Y	 is	realized.	To	make	this	situation	concrete,	suppose	that	D1	is	
a	decision	about	the	acquisition	of	seismic	data,	X	is	the	result	of	
the	 seismic	 survey,	D2	 is	 the	decision	 to	drill,	 and	Y	 is	 the	 eco-
nomic	 value	 of	 the	 reservoir	 (Stibolt	 and	 Lehman	 1993;	 Bickel	
et	al.	2008).

To	evaluate	this	decision	tree,	we	start	at	the	end	and	roll	back	
(McNamee	and	Celona	1990;	Clemen	and	Reilly	2001).	Suppose	
we	only	seek	to	maximize	expected	values	(i.e.,	we	are	risk	neutral)	
and	 that	 X	 and	 Y	 are	 dependent.	 In	 this	 case,	 we	 would	 need	 to	
compute	E[Y |	X	=	x]	to	choose	the	optimal	alternative	at	Stage	2.	
If	 this	 conditional	 mean	 cannot	 be	 expressed	 as	 a	 function	 of	 x,	
we	must	simulate	Y	for	each	realization	of	X.	If	we	are	performing	
1,000	MC	trials,	for	each	of	the	1,000	trials	for	X,	we	would	have	to	
perform	an	additional	1,000	trials	for	Y |	X = x,	requiring	1,0002	or	
1	million	trials.	This	nested	MC	simulation	is	not	straightforward	
to	implement	and	may	require	a	long	time	to	evaluate.

Costly Evaluation.	The	second	reason	one	may	prefer	discretiza-
tion	 methods	 is	 that	 they	 require	 fewer	 points	 (generally	 many	
fewer	 points)	 to	 match	 the	 underlying	 moments.	 Because	 each	
point	or	MC	trial	requires	the	evaluation	of	an	output	function	(e.g.,	
NPV),	this	process	may	be	computationally	costly.	To	understand	
this	more	fully,	we	can	determine	the number of MC samples that 
would be required to achieve the same accuracy as a discretization 
method (Pfeifer	et	al.	1991).	We	refer	to	this	as	S-equivalence.

The	 N-point	 Gaussian	 quadratures	 in	 Table	 1	 exactly	 match	
the	 first	 2N	 moments	 of	 the	 uniform,	 normal,	 and	 exponential	
distributions.	Even	in	the	case	when	N	=	2,	these	approximations	
exactly	 match	 the	 mean,	 variance,	 and	 skewness	 of	 the	 original	
distributions.	As	such,	MC	could	not	do	a	better	job	approximating	
these	moments.	The	shortcuts	listed	in	Table	2	may,	on	the	other	
hand,	fail	to	match	some	moments	of	certain	distributions.	We	will	
determine	 S-equivalents	 for	 these	 shortcut-distribution	 combina-
tions.	On	the	basis	of	Eq.	5	and	for	ease	of	exposition,	we	focus	
only	on	the	raw	moments.

Uncertainty in Moments. Imagine	creating	a	new	distribution	
Y Xk

k= 	 from	which	we	will	 sample	 in	order	 to	estimate	 the	 raw	
moments	of	X.	The	mean	of	Yk ,	mk ,	 is	 the	kth	raw	moment	of	X.	
For	example,	if	k	=	1,	then	we	would	simply	sample	from	X.	Each	
set	 of	 S	 samples	 would	 produce	 an	 estimate	 of	 the	 mean	 of	 X.	
However,	each	time	we	rerun	our	MC	simulation	using	S	samples,	
we	would	compute	a	different	mean.	 In	other	words,	 the	 sample	
raw	moments	are	random	variables.	We	quantify	their	uncertainty	
by	computing	 their	 central	moments	 (e.g.,	 the	variance).	The	 jth	
central	moment	of	Yk 	is	

m E Y E Y E Xj
k

k k
j k

k
j≡ − = −[( [ ]) ] [( ) ]m .			. . . . . . . . . . . . . . . . (12)

If	k	equals	1	and	j	equals	2,	then	we	have

m E X2
1

1
2

2 1
2≡ − = −[( ) ]m m m ,		 	. . . . . . . . . . . . . . . . . . . . . . . (13)

which	is	the	familiar	formula	for	the	variance	written	in	terms	of	
raw	moments.	When	 referring	 specifically	 to	 the	variance	of	 the	
kth	raw	moment,	we	will	use	the	expression	  k k k

2 ≡ .
Discretization Accuracy. Let	ck	 be	 the	difference	between	 the	

true	moment	mk	and	the	approximate	moment	m̂k,	obtained	by	means	
of	a	discretization.	It	will	be	useful	to	normalize	this	difference	by	
the	standard	deviation	of	the	moment,	which	may	be	obtained	with	
Eq.	12.	We	write	the	accuracy	of	the	approximation	as

d
m m


k

k

k

k k

k

c

m
= = −

2

ˆ
.		 	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (14)

Computing S-Equivalence. Now,	suppose	 that	 instead	of	using	
a	 discretization,	 we	 estimate	mk	 by	 means	 of	 MC	 simulation.	 Let	
the	estimated	value,	which	 is	 an	average,	given	S	 samples	be	mk S; .	
According	to	the	central limit theorem	(CLT),	mk S; 	 is	normally	dis-
tributed	with	mean	mk	and	variance	 k S2 / 	for	large	S.	Thus,	the	prob-
ability	that	the	simulation	will	more	accurately	estimate	mk	than	the	
discretization	method	is	(see	Appendix	A	for	derivation)	given	by

P c xk S k km m; − ≤( ) = ( ) −2 1 ,			. . . . . . . . . . . . . . . . . . . . . . (15)

where	 x Sk= d 	 and	 	 is	 the	 standard	 normal	 CDF.	 If	 we	 want	
this	probability	to	be	τ,	then	we	must	take	

S k= +





− −d
2 1

2
1

2
 .		 	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16)

samples	(see	Appendix	A	for	derivation).	For	example,	if	we	want	
the	 simulation	 to	 have	 a	 95%	 chance	 of	 estimating	 the	 kth	 raw	
moment	 more	 accurately	 than	 the	 discretization,	 we	 must	 take	
S k k= ( ) ≈ ⋅− − −d d2 1 2 2 21 95 2 1 96 . / . 	samples.	Thus,	Eq.	16	establishes	
an	equivalence	between	discretization	and	simulation	(Pfeifer	et	al.	
1991).	[Pfeifer	et.	al	(1991)	determined	S-equivalence	for	match-
ing	 the	mean.	They	did	not	 consider	 higher	moments	 or	 use	 the	
Edgeworth	expansion,	as	we	do	here.]	

Eq.	16	will	not	work	well	when	the	underlying	random	variable	Xk	
is	highly	skewed	or	kurtotic.	In	these	cases,	the	CLT	approximation	
may	not	be	accurate	for	the	number	of	trials	that	Eq.	16	says	we	need	
to	perform.	The	CLT	holds	under	quite	general	conditions	and	states	
that	the	sum	of	an	infinite	number	of	random	variables	converges	in	
distribution	to	the	normal.	However,	it	does	not	specify	how	quickly	
this	convergence	will	 take	place.	 In	 this	case,	we	must	 rely	on	 the	
Edgeworth	 expansion	 (Cramér	 1946;	 Hall	 1992),	 which	 corrects	
the	 CLT	 for	 higher	 underlying	 moments.	 For	 the	 distributions	 we	
consider	here,	this	issue	primarily	affects	the	log-normal	distribution	
and,	to	a	lesser	degree,	the	exponential.	In	this	case,	the	probability	
that	 the	 MC	 simulation	 will	 estimate	mk	 more	 accurately	 than	 the	
discretization	method	is	(see	Appendix	A	for	derivation)	given	by
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where	x Sk= d ,	as	before,	and		is	the	standard	normal	PDF.	The	
term	O S( )−2 	signifies	that	the	remaining	terms	are	at	most	of	order	
S-2.	 The	 terms	 g m m3

3 3 2 3 2 3 2k
k k

k
k

k
km m E X E X= = − −− −/ /[( ) ] [( ) ] 	 and	

g m m4
4 2 4 2 2 3k
k k

k
k

k
km m E X E X= = − − −− −[( ) ] [( ) ] 	 are	 the	 skewness	

and	 kurtosis,	 respectively.	 If	 the	 skewness	 and	 kurtosis	 are	 zero	
(or	small),	or	if	S	is	very	large,	then	Eq.	17	reduces	to	Eq.	15	and	
we	can	use	Eq.	16	to	find	the	equivalent	number	of	samples.	On	
the	other	hand,	if	the	skewness	and	kurtosis	are	nonnegligible,	then	
we	must	numerically	solve	Eq.	17	for	S.	

Lerche	 and	 Mudford	 (2005a,	 2005b)	 investigate	 the	 number	
of	samples	required	 to	estimate	 the	mean	of	several	distributions	
including	log-normal	and	exponential	and	base	their	estimates	on	
the	CLT.	This	approximation,	while	not	fully	appropriate,	should	
not	have	 induced	substantial	errors	 in	 their	case	because	of	 their	
focus	on	estimating	only	the	mean.	However,	we	are	interested	in	
estimating	higher	moments,	and	these	higher	moments	(e.g.,	E[X4])	
will	 induce	 additional	 skewness	 and	 kurtosis	 and	 the	 CLT	 will	
fail	 to	work	well	 in	these	cases.	For	example,	for	the	log-normal	
distribution	 that	 we	 discuss	 here,	 we	 find	 that	 Eq.	 16	 overesti-
mates	the	required	number	of	samples	by	almost	25%.	In	the	case	
of	 the	 log-normal,	 negative	 values	 are	 not	 possible.	 This	 causes	
Eq.	16,	which	is	based	on	the	CLT	and	assumes	that	the	mean	is	
normally	distributed,	to	require	more	samples	so	as	to	reduce	the	
variance	 of	 the	 mean	 enough	 such	 that	 negative	 values	 are	 very	
unlikely—at	 least	 less	 than	 (1	–	0.95)/2	=	2.5%.	The	Edgeworth	
expansion	performs	better	by	taking	the	kurtosis	and	the	skewness	
into	account.	These	normalized	central	moments	are	very	large	in	
the	 case	of	 the	 log-normal—especially	when	we	are	 considering	
the	distribution	of	X3	and	X4.

Table 7	provides	the	95%	S-equivalences	based	on	Eq.	17	for	
the	EPT,	GQN,	ESM,	MCS,	MRO,	and	ZDT	shortcuts	for	the	uni-
form	U(0,	b),	normal	N(0,	),	triangular	T(0,	b,	b/2),	exponential	
E(l),	and	log-normal	L(m,	1)	distributions.	These	results	hold	for	
any	(see	Appendix	A)

• Exponential	distribution
• Uniform	distribution	bounded	by	zero	on	one	side,	U(0,	b)
• Normal	distribution	centered	at	zero, N(0,	)
• Symmetric	 triangular	 distribution	 bounded	 by	 zero	 on	 one	

side,	T(0,	b,	b/2)
• Log-normal	distribution	with	unit	variance	(of	ln	X),	L(µ,	1)
While	the	results	in	Table	7	do	not	hold	for	all	possible	distri-

butions	within	a	given	family,	they	should	give	the	reader	a	sense	
for	 the	 magnitude	 of	 MC	 samples	 that	 are	 required	 to	 match	 a	
particular	discretization.	

These	 results	 are	 striking.	First,	 setting	 aside	 the	 fact	 that	 all	
the	approximations	we	consider	perfectly	match	the	mean	of	sym-
metric	distributions	[U,	N,	T(a,	b,	b/2)],	most	of	the	shortcuts	are	

equivalent	to	thousands,	if	not	tens	of	thousands,	of	MC	samples.	
For	 example,	 it	 would	 take	 57,469	 MC	 samples	 to	 have	 a	 95%	
chance	 of	 estimating	 the	 second	 raw	 moment	 of	 an	 exponential	
with	greater	accuracy	than	EPT,	which	Pearson	and	Tukey	(1965)	
did	 not	 even	 suggest	 using	 to	 estimate	 any	 moment	 beyond	 the	
mean.	Second,	EPT	and	GQN	are	clearly	dominant,	having	larger	
S-equivalences	 than	 the	other	 approximations.	These	 approxima-
tions	 do	 very	 well	 on	 everything	 except	 the	 third	 moment	 of	
uniform	distributions.	Consider	estimating	the	mean	of	log-normal	
distribution:	 EPT	 and	 GQN	 are	 equivalent	 to	 almost	 12	 and	 65	
times	more	 samples,	 respectively,	 than	ESM	 (29,499	or	 161,943	
compared	 to	 2,495).	Third,	 these	 results	 serve	 to	 emphasize	 our	
earlier	 conclusion	 that	 the	 performance	 of	 ESM	 and	 MCS	 is	
quite	poor	 in	some	cases.	For	example,	ESM	and	MCS	are	only	
equivalent	 to	941	and	676	MC	samples,	respectively,	 in	 terms	of	
estimating	 the	 second	 moment	 of	 the	 L(µ,	 1)	 distribution.	 (The	
discretization	 shortcuts	do	not	provide	unbiased	 estimates	of	 the	
underlying	 moments.	 We	 do	 not	 address	 the	 issue	 of	 bias	 here.	
Rather,	we	assume	that	over-	and	underestimates	of	the	moments	
are	equally	costly.)	While	the	direction	of	this	result	is	not	surpris-
ing,	given	that	we	know	these	methods	underestimate	variance,	its	
magnitude	is	striking.	Use	of	ESM	to	model	the	uncertainty	of	a	
log-normal	 distribution,	 which	 occurs	 whenever	 it	 is	 applied	 to	
estimations	of	oil	or	gas	 reserves,	 is	equivalent	 to	 running	 fewer	
than	1,000	MC	trials!

A	 large	 S-equivalence	 is	 a	 result	 of	 two	 possible	 factors:	 (1)	
high	 accuracy	of	 the	discretization	method	and	 (2)	 the	difficulty	
of	simulating	the	underlying	random	variable.	As	a	case	in	point,	
consider	 the	 EPT	 and	 GQN	 approximations	 of	 the	 log-normal	
distribution.	The	S-equivalences	for	estimating	the	mean	are	large	
because	 the	 discretizations	 estimate	 the	 mean	 closely.	 The	 S-
equivalences	for	the	third	moment	are	large	because	approximating	
the	 third	 moment	 of	 a	 log-normal	 distribution	 by	 means	 of	 MC	
simulation	 is	 very	 difficult,	 requiring	 many	 tens	 of	 thousands	 of	
MC	samples.	Given	the	large	number	of	samples	that	are	required	
in	most	cases,	we	see	that	discretization	is	a	viable,	and	in	some	
cases	preferable,	alternative	to	MC	simulation.	Of	course,	we	are	
interested	 in	 preserving	 the	 moments	 of	 the	 output	 (e.g.,	 NPV),	
which	might	be	a	function	of	many	input	uncertainties	and	several	
downstream	decisions.	We	do	not	address	 this	more	complicated	
issue	here.	

Does Discretization Matter?
“New”	methodologies	are	often	resisted	on	the	grounds	that	they	
will	not	obviously	make	a	material	difference.	(We	place	“new”	in	
quotes	because	Pearson-Tukey	predates	Swanson-Megill	by	almost	
a	decade	and	Gaussian	quadrature	predates	all	other	methods	by	

TABLE 7—95% S-EQUIVALENCES FOR DISCRETIZATION SHORTCUTS 

Raw  NQG TPE 

Moment U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) 

First (mean) ∞ ∞ ∞ >1MM*  ∞ ∞ ∞   
Second 4,830 >1MM 67,654 57,470 2,781 1,930 ∞ 644,360 >1MM 4,583 

>1MM 161,943

Third 1,940 ∞ 24,388 3,918 48,591 775 ∞ 231,941 14,592 56,102 

Raw ESM MCS 

Moment U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) 
First (mean) ∞ ∞ ∞ >1MM 2,495 ∞ ∞ ∞ 1,451 560 
Second 2,128 36,165 9,745 1,674 941 30,732 240 14,068 407 676 
Third 855 ∞ 3,508 498 34,475 12,347 ∞ 5,064 207 35,520 

Raw  TDZ ORM 

Moment U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) 
First (mean) ∞ ∞ ∞ 13,529 1,702 ∞ ∞ ∞ 120,295 2,722 
Second 77,873 1,840 115,500 1,264 988 1,046 904,694 5,986 1,716 895 
Third 31,293 ∞ 41,584 554 35,758 420 ∞ 2,155 448 33,688 
*Note: >1MM = more than 1 million. 



136	 July	2011	SPE	Economics	&	Management

at	 least	 a	 century.)	While	we	do	not	 have	 space	 to	 fully	 address	
this	issue	here,	we	note	that	most	of	the	methods	presented	in	this	
paper	are	no	more	complicated	than	existing	approximations,	but	
are	more	accurate.	For	example,

• EPT	and	GQN	are	three-point	approximations,	like	ESM	and	
MCS,	but	are	more	accurate	across	a	range	of	distributions.	

• The	 approximations	 given	 in	 Tables	 3	 through	 5	 are	 three-
point	 approximations	 that	 match	 the	 first	 three	 moments	 of	 the	
listed	 distributions—again,	 exceeding	 the	 performance	 of	 ESM	
and	MCS.

• The	 four-point	 approximations	 given	 in	 Table	 6	 match	 the	
mean	and	variance	of	log-normal	distributions,	resulting	in	better	
performance	than	the	three-point	ESM	and	MCS	shortcuts.

• The	log-SM	method	that	we	outline	will	perfectly	match	all	
the	moments	of	the	log-normal	and	is	only	slightly	more	complex	
than	SM.

• Other	methods	that	we	discuss,	such	as	moment	matching	for	
distributions	 not	 listed	 in	Tables	 4	 through	 7,	 are	 more	 complex	
than	 current	 practice.	 However,	 this	 increase	 in	 complexity	 will	
increase	 the	 accuracy	 of	 the	 results	 (much	 in	 the	 same	 way	 that	
3D	reservoir	simulation	is	more	complex,	but	more	accurate,	than	
2D	simulation).

However,	we	realize	that	some	will	require	convincing	before	
changing	 their	 practice.	 To	 address	 this,	 we	 offer	 the	 following,	
necessarily	simple,	example.

Illustrative Example.	Suppose	an	oil	company	is	considering	the	
purchase	 of	 a	 prospect	 that	 contains	 an	 uncertain	 volume	 of	 oil.	
For	 the	 sake	 of	 argument,	 suppose	 the	 reserves	 are	 believed	 to	
be	 log-normally	distributed	with	a	mean	of	90	million	BOE	and	
a	 standard	deviation	of	118	million	BOE.	These	parameters	cor-
respond	to	a	standard	deviation	for	log	reserves	of	1.0,	and,	thus,	
we	can	make	use	of	 the	 four-point	approximation	given	 in	Table	
6.	 To	 illustrate	 the	 accuracy	 of	 each	 approximation	 method,	 we	
will	 consider	 three	 different	 valuation	 scenarios.	 In	 the	 first,	 the	
company	believes,	on	the	basis	of	market	transactions	(Howard	and	
Harp	2009),	 that	proved	 reserves	 in	 this	geographic	 location	and	
depositional	 environment	 are	 worth	 USD	 5	 per	 BOE.	 This	 case	
is	 labeled	“Linear”	 in	Fig. 5.	We	also	consider	a	case	where	 the	
value	function	is	convex	and	another	that	is	concave.	The	concave	
case	 could	 correspond	 to	 a	 situation	 where	 the	 host	 government	
takes	 a	 small	 share	 of	 small	 fields	 to	 increase	 the	 probability	 of	
development	 but	 will	 take	 a	 proportionally	 larger	 share	 as	 field	
size	increases.	The	convex	case	might	represent	large	initial	fixed	
costs,	perhaps	for	infrastructure,	that	do	not	scale	in	proportion	to	
field	size.	Whatever	the	case	may	be,	the	important	point,	as	far	as	
the	example	is	concerned,	is	that	discretization	accuracy	depends	
upon	the	shape	of	the	value	function.	

We	 next	 apply	 the	 discretization	 methods	 discussed	 in	 this	
paper	 to	 the	 reserves	 distribution	 and	 compute	 the	 expected	
NPV	 of	 the	 prospect.	 For	 the	 bracket-median	 and	 bracket-mean	
discretizations,	we	consider	three-	and	four-point	approximations	
with	 weightings	 of	 25-50-25	 and	 10-40-40-10,	 respectively.	 We	
compare	 the	 approximate	 value	 from	 each	 discretization	 to	 the	
exact	value,	which	we	obtain	by	means	of	100,000	MC	samples.	
The	error	for	each	approximation	is	presented	in	Table 8.	

The	errors	in	the	linear	case	are	simply	the	errors	of	each	dis-
cretization	in	estimating	mean	reserves.	We	see	that	the	four-point	
log-normal	 approximation	 and	 the	 EPT,	 GQN,	 and	 the	 bracket-
mean	 approaches	 estimate	 the	 expected	 NPV	 to	 within	 1%.	The	
other	methods	underestimate	the	mean	by	at	least	5%;	the	bracket-
median	approach	is	especially	poor.	Errors	in	the	concave	and	con-
vex	cases	differ	from	the	linear	case	because	in	these	situations	the	
variance	(and	other	moments)	of	the	input	distribution	is	important.	
Because	most	of	discretization	methods	misestimate	the	variance,	
they	will	misestimate	the	expected	value	of	the	output	(NPV).	The	
errors	 are	 less	 in	 the	 concave	 case	 because	 the	 concavity	 of	 the	
value	 function	 serves	 to	 reduce	 the	 impact	 of	 misestimating	 the	
variance	of	the	input	distribution.	In	the	convex	case,	we	see	that	
the	four-point	log-normal	and	the	four-point	bracket	mean	perform	
very	well.	Table 9 presents	 the	 error	 in	 the	variance	of	NPV.	 In	
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Fig. 5—Illustrative example used to show inaccuracy of various approximations.

TABLE 8—APPROXIMATION ERROR IN MEAN FOR 
ILLUSTRATIVE EXAMPLE 

Approximation Concave Linear Convex 

4-pt Lognormal –1% 0% 0% 
EPT 0% –1% –4% 
GQN 0% –1% –3% 
ESM –3% –5% –9% 
MCS –8% –11% –15% 
MRO –4% –6% –10% 
ZDT –2% –5% –9% 

3-pt Bracket Median –14% –17% –21% 
4-pt Bracket Median –10% –12% –16% 
3-pt Bracket Mean 2% 0% –4% 
4-pt Bracket Mean 1% 0% –2% 
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this	 case,	 we	 see	 that	 all	 the	 approximations	 underestimate	 the	
output	variance.	The	performance	of	ESM,	MCS,	and	the	bracket-
median	approaches	are	especially	poor,	while	 the	 four-point	 log-
normal	 and	 the	 four-point	 bracket-mean	 discretizations	 perform	
significantly	better.	Of	course,	 the	 four-point	 log-normal	and	 the	
bracket-mean	 approximations	 have	 been	 specifically	 tailored	 to	
the	 underlying	 distribution,	 which	 demonstrates	 the	 importance	
of	this	practice.

Is	underestimating	the	mean	by	10%	and	the	variance	by	50%	
a	problem?	Clearly,	if	the	company	is	setting	a	purchase	(or	sale)	
price,	 underestimating	 the	 value	 of	 the	 prospect	 by	 10%	 could	
undermine	 the	 opportunity.	 This	 would	 be	 especially	 true	 in	 a	
competitive	situation,	such	as	bidding.	In	addition,	the	optimal	bid	
amount	depends	critically	upon	the	company’s	estimate	of	uncer-
tainty.	 Underestimating	 the	 variance	 by	 50–80%	 may	 increase	
the	probability	of	overpaying	 for	 the	property.	Thus,	we	see	 that	
discretization	matters	and	could	have	a	material	impact	on	decision	
making.	 In	 what	 other	 part	 of	 the	 business	 would	 misestimating	
key	performance	metrics	by	10–80%	be	acceptable?

Conclusion: Recommendations and Discussion
We	 conclude	 with	 a	 set	 of	 recommendations	 and	 observations	
regarding	 the	 oil	 and	 gas	 industry’s	 approach	 to	 probabilistic	
modeling.

Recommendations.	If	one	is	interested	in	estimating	the	moments	
of	an	output	distribution,	then	closely	matching	the	moments	of	the	
input	distributions	is	a	necessary	requirement.	In	this	case,	the	best	
discretization	methods	presented	 in	 this	 paper	 are	 very	 accurate,	
matching	2N	moments	(including	the	zeroth)	with	only	N	points.	
They	could,	therefore,	be	used	instead	of	MC	simulation,	at	least	
early	in	an	analysis,	to	quantify	uncertainty	with	only	a	few	evalu-
ations	of	 the	output	function.	The	primary	recommendations	that	
follow	from	our	work	are
•  For	 maximum	 accuracy,	 we	 should	 use	 moment	 matching	 and	

apply	it	directly	to	each	input	distribution.	For	several	distribu-
tion	 families,	 the	 appropriate	 weights	 and	 values	 have	 already	
been	calculated	 (see	Table	1	and	Tables	3	 through	7).	 In	other	
cases,	the	quadrature	could	be	calculated	on	a	case-by-case	basis	
using	methods	detailed	in	Stroud	and	Secrest	(1966),	Miller	and	
Rice	 (1983),	 Smith	 (1993),	 or	 Davis	 and	 Rabinowitz	 (1984),	
for	example.

•  If	moment	matching	is	too	difficult	to	implement	or	communicate	
then	the	equal-areas	approach	is	not	an	unreasonable	alternative.	
However,	one	must	bear	in	mind	that	this	approach	will	tend	to	
underestimate	the	variance	(and	other	higher	moments).

•  If	one	wishes	to	fix	the	values	at	the	P90,	P50,	P10	or	weights	at	
25-50-25	or	30-40-30	for	communication,	assessment,	or	compu-
tational	reasons,	then	using	the	moment-matching	discretizations	
in	Tables	3	through	5	will	result	in	maximum	accuracy.	

•  When	dealing	with	log-normal	distributions,	work	with	the	log	
of	 the	random	variable,	which	translates	 it	 to	a	normal	random	

variable.	 Then,	 apply	 the	 discretization	 methods	 to	 the	 trans-
formed	variable.

•  SM	(or	ESM),	MCS,	and	ZDT	should	not	be	used	as	part	of	a	
final	analysis	(recall	that	McNamee	and	Celona	explicitly	warned	
against	 using	 their	 shortcut	 in	 this	 way).	 Direct	 application	 of	
ESM	 to	 log-normal	 variables,	 as	 is	 common,	 to	 estimate	 their	
moments	 (e.g.,	mean,	variance)	 should	be	considered	an	unac-
ceptable	professional	practice.

•  Well-chosen	 discrete	 approximations	 are	 equivalent	 to	 tens	 of	
thousands	 of	 MC	 samples.	 This	 argues	 for	 greater	 use	 of	 dis-
cretization	methods.

Discussion and Conclusion.	Despite	attempts	to	justify	it	(Hurst	
et	 al.	 2000;	 Rose	 2001),	 SM	 has	 no	 theoretical	 justification	 for	
use	 with	 any	 distribution	 other	 than	 normal	 (direct	 use	 with	 the	
log-normal	 is	 especially	 error	 prone).	 Megill	 noted	 its	 problems	
nearly	40	years	ago.	Why	would	we	expect	MCS	or	ESM/SM	(or	
the	 other	 shortcuts),	 which	 are	 symmetric,	 to	 preserve	 the	 mean	
of	 skewed	 distributions?	 [Some	 analysts	 have	 told	 us	 that	 MCS	
(25-50-25)	 is	 good	 for	 symmetric	 distributions,	 but	 that	 ESM	
(30-40-30)	should	be	used	when	the	distribution	is	skewed!]	Why	
have	we	institutionalized	a	method	known	to	be	biased?	Megill’s	
answer	 was	 that	 SM	 offers	 protection	 from	 uncertainty	 because	
its	estimates	are	known	to	be	biased	low	(Megill	1984).	This	is	in	
much	the	same	spirit	as	using	a	high	discount	rate	or	a	low	oil	price	
to	 account	 for	 uncertainty.	We	 do	 not	 support	 such	 adjustments;	
decision	makers	should	be	provided	with	unbiased	estimates	of	the	
risks	facing	the	company.

Another	explanation	for	the	acceptance	of	SM	is	the	industry’s	
focus	on	the	mean	and	“risking”	a	prospect	(Bickel	and	Bratvold	
2008),	to	the	exclusion	of	other	moments.	Paraphrasing	Steven	Jay	
Gould,	 “the	 mean	 is	 not	 the	 message”	 (Gould	 1985).	 Risking	 a	
prospect	does	nothing	either	to	understand	the	risk	or	to	help	man-
age	 it.	 It	 simply	 implies	 that	 the	 mean,	 the	 probability-weighted	
average,	 was	 calculated.	 Decision	 makers	 are	 not	 indifferent	 to	
all	projects	with	the	same	mean.	Rather,	they	want	to	understand	
the	 surrounding	 uncertainty	 and	 the	 risk.	 Furthermore,	 as	 dem-
onstrated	 by	 Eq.	 5	 and	 illustrated	 in	 the	 preceding	 section,	 one	
may	not	accurately	determine	 the	mean	of	an	output	distribution	
without	accurately	representing	the	mean	and	higher	moments	of	
the	input	distributions.

Why	do	we	continue	to	use	ESM	when	more-accurate	alterna-
tives	exist?	Why	do	we	spend	millions	of	dollars	on	reservoir-simu-
lation	models	and	then	represent	 the	output	of	 those	models	 in	a	
decision	 tree	with	simplistic	discretizations?	Perhaps	 it	 is	simply	
a	matter	of	tradition	and	path	dependence:	“We	have	always	done	
it	 this	 way,”	 “That	 is	 the	 way	 everybody	 else	 does	 it,”	 or	 “That	
is	 the	 way	 I	 was	 taught.”	 In	 fact,	 some	 companies	 mandate	 that	
either	MCS	or	ESM	be	used	 in	project	valuations.	We	hope	 that	
our	paper	will	encourage	improved	practice.

Nomenclature
 ck	 =		difference	 between	 true	 moment	 and	 approximate		

moment
 E[–]	 =	expectation	operator
 E(l)	 =	exponential	random	variable	with	a	mean	of	1 l
 f	 =	PDF
 F	 =	CDF
 G	 =	excess	distribution	function
 L(m,	)	=		log-normal	random	variable	with	mean	of	ln	X	of	m	and	

standard	deviation	of	ln	X	of	
 mk	 =	E[(X –	µ1)

k]	=	kth	central	moment	of	X
 N	 =	number	of	discretization	points
 N(m,	)	=		normal	 random	variable	with	mean	of	m	 and	standard	

deviation	of	
 O	 =	order	of	approximation
 p	 =	probability
 P(x)	 =	polynomial	in	x
	 PZ	 =	Zth	percentile	of	CDF

TABLE 9—APPROXIMATION ERROR IN VARIANCE FOR 
ILLUSTRATIVE EXAMPLE 

Approximation Concave Linear Convex 

4-pt Lognormal 30% 0% –57% 
EPT –18% –36% –72% 
GQN –11% –30% –69% 
ESM –45% –60% –83% 
MCS –53% –66% –86% 
MRO –42% –57% –82% 
ZDT –47% –62% –84% 

3-pt Bracket Median –66% –75% –90% 
4-pt Bracket Median –48% –60% –83% 
3-pt Bracket Mean –38% –54% –80% 
4-pt Bracket Mean –21% –37% –71% 
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 S	=	number	of	MC	samples
 T(a,	b,	c)	=		triangular	 random	 variable	 between	 a	 and	 b	 with	 a	

mode	at	c
 U(a,	b)	=	uniform	random	variable	between	a	and	b
 v	=	value	function
 x	=	realization	of	random	variable	X
 X	=	random	variable
 i	=	percentile
 g3	=	skewness
 g4	=	kurtosis
 dk	=	accuracy	of	discrete	approximation	of	kth	moment
	 m̂k 	=	kth	moment	obtained	from	discrete	approximation
	 mk S; 	=	kth	moment	obtained	from	average	of	S	MC	samples
 mk	=	E[Xk]	=	k-th	raw	moment	of	X
 2	=	m2	=	variance
	 	=	standard	normal	CDF
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Probability the MC Simulation Will Be More Accurate Than 
the Approximation.
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S-Equivalence for CLT.
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Edgeworth Expansion. The	 first	 three	 terms	 of	 the	 Edgeworth	
expansion	are
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where	r	is	the	rth	cumulant,	2	is	the	variance,	and	1	is	the	mean.
( )j 	 is	 the	 jth	 derivative	 of	 ( )j .	 Thus,	 ( ) ( )j j= − 1 ,	 where	 	
is	 the	 standard	 normal	 PDF.	 The	 jth	 derivative	 of	 the	 standard		

normal	PDF	is	 ( ) ( ) ( )j j

jH x x= −( )1 ,	where	H xj ( )	is	the	Hermite	

polynomial	of	order	j.	Thus,	( ) ( ) ( ) ( )j j j

jH x x= = −( )− −
− 1 1

11 .	The	
Hermite	polynomials	are	an	even	(odd)	function	when	j	–	1	is	even	
(odd).	Thus,	we	have
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In	 the	 discretization	 work,	 we	 are	 looking	 at	 the	 probability	 of	
being	within	the	interval	[–x	,	x],	which	is	FS(x)	–	FS(–x).	Because	
Hj	 is	 even	when	 j	 is	 even	and	(x)	 is	an	odd	 function,	 the	 terms	
of	order	S-j/2	will	cancel	 in	 the	subtraction	when	 j is	odd	and	we	
will	be	left	with
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where	g3	is	the	skewness	and	g4	is	the	kurtosis.	The	third	and	fifth		
Hermite	polynomials	are	H x x x3

3 3( ) = − 	and	H x x x x5
5 310 15( ) .= − +

	

H x x x x5
5 310 15( ) .= − +  Substituting	these	values	into	Eq.	A-5	yields	Eq.	17.

Exponential S-Equivalence. The	inverse	CDF	for	the	exponential	
is	F i i

− −= − −1 1 1( ) ln( ) l  .	The	approximate	moment	for	approxi-
mation	A	is	then
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The	kth	raw	moment	of	the	exponential	is	

m lk
k k= − +− ( )1 .			. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A-7)

The	variance	of	the	kth	raw	moment	is	
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Thus,	we	then	have
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We	see	that	d	is	independent	of	l	and	that	the	S-equivalences	that	
we	list	in	Table	7	hold	for	any	exponential	PDF.

Uniform S-Equivalence. The	 inverse	 CDF	 for	 the	 uniform	 is
F a b ai i

− = + −1( ) ( )  .	 The	 approximate	 kth	 raw	 moment	 for	
approximation	A	is	then
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The	true	kth	raw	moment	of	the	uniform	is	
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The	variance	of	the	kth	raw	moment	is	
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Thus,	we	have	
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If	a	=	0,	then	we	have
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and	we	see	that	d	is	independent	of	b	and	that	the	S-equivalences	
that	we	 list	 in	Table	7	hold	 for	any	U(0,b).	 If	a	 is	nonzero,	 then	
S-equivalences	will	differ	from	those	shown	in	Table	7.
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Normal S-Equivalence. The	 inverse	 CDF	 for	 the	 normal	 is
F i i

− −= +1 1( ) ( ) m   .	 The	 approximate	 kth	 raw	 moment	 for	
approximation	A	is	then
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In	the	case	of	the	normal,	the	raw	moments	are	quite	complex	and	
we	restrict	our	attention	to	the	case	where	µ	=	0.	In	this	case,	the	
true	kth	raw	moment	of	the	normal	is	

m   

k
k k i ke

k= +( ) +





− −1 2 2 12 1
1

2
/ /  .		 	. . . . . . . . . . . . . . (A-16)

Similarly,	the	variance	of	the	kth	raw	moment	is
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Thus,	we	have	
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and	we	see	that	d	is	independent	of		and	that	the	S-equivalences	
that	we	list	in	Table	7	hold	for	any	N(0, ).

Triangular S-Equivalence. The	inverse	CDF	for	the	triangular	is	

F
a b a c a F c

b b a b c
i

i i− =
+ − − ≤ <

− − −
1

0
( )

( )( ) ( )

( )( )


 

(( ) ( )1 1− ≤ ≤





  i iF c
.		 	. . .(A-19)

The	approximate	kth	raw	moment	for	approximation	A	is	then
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where	Nc	is	the	approximation	Point	i at	which	F(c)	=	i.	
The	raw	moments	are	complex	in	the	case	of	the	triangular,	and	

we	 restrict	our	attention	 to	 the	case	where	a	=	0.	Writing	c	 as	a	
fraction	z	of	b,	the	approximate	kth	raw	moment	is	then
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The	true	kth	raw	moment	is	
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The	variance	of	the	kth	raw	moment	is
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Thus,	we	have	
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and	we	see	that	d	is	independent	of	b	and	that	the	S-equivalences	
that	we	list	in	Table	7	hold	for	any	T(0, b, b/2).

Log-Normal S-Equivalence. The	inverse	CDF	for	the	log-normal	
is	F i i

− −= +1 1( ) [ ( )] m  exp  .	The	approximate	kth	raw	moment	
for	approximation	A	is	then
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The	true	kth	raw	moment	of	the	log-normal	is	
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The	variance	of	the	kth	raw	moment	is
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Thus,	we	have
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and	we	see	that	d	is	independent	of	m	and	that	the	S-equivalences	
that	we	list	in	Table	7	hold	for	any	L(m, 1).
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