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Summary
Swanson’s mean (SM) is heavily used within the oil and gas 
industry to approximate continuous probability distributions such 
as the log-normal. In this paper, we document the errors induced 
by this practice, which, as we show, has no theoretical justification 
for any distribution other than the normal. In parallel, we review 
methods to discretize continuous distributions and compare these 
methods to Monte Carlo (MC) simulation. We demonstrate that the 
best discretization methods have an accuracy equivalent to that of 
tens of thousands of MC trials.

Introduction
Most decision or risk analyses include continuous random vari-
ables (e.g., oil in place, oil price, or porosity). Analysts are 
frequently concerned with how to best structure, compute, and 
communicate decision models under these circumstances. While 
decision trees are well suited for discrete random variables (RVs) 
with a few possibilities, they can become unmanageable when the 
number of outcomes is large. For example, trees may become too 
large to easily display or the large number of endpoints may require 
too many evaluations of a possibly costly (to evaluate) objective 
function (e.g., runs of a reservoir-simulation model). The question 
we address in this paper is how one should include continuous RVs 
in a decision tree given these limitations. 

Two approximation methods, which are closely related, have 
been developed to address this problem: discretization and MC 
simulation. Specifically, suppose we are constructing a decision 
model that takes as an input the continuous RV X (e.g., oil in place). 
Under either discretization or MC simulation, we approximate the 
continuous probability-density function (PDF) f(x), or the cumula-
tive distribution function (CDF) F(x), with a set of values x Xi ∈ ,	
i = 1, 2, …, N, and associated probabilities pi ≡ p(xi). In MC simu-
lation, N is generally large (in the thousands), and the xi are drawn 
randomly from the entire support of X using methods such as the 
inverse cumulative method (Clemen and Reilly 2001). In this case, 
X = F–1(U), where F–1 is the inverse CDF and U is uniformly dis-
tributed over [0, 1]. The inverse cumulative method assures that X 
is distributed according to F. Discretization methods, on the other 
hand, comprise only a few points (three is common), but seek to 
choose points that will preserve desired properties of X. The most 
natural and common properties of interest are the raw (e.g., the 
mean) and central moments of X (e.g., variance, skewness, kur-
tosis). As we discuss in the following, if an approximation fails 
to preserve the moments of X, it is unlikely that it will accurately 
preserve the moments of the output distribution (Miller and Rice 
1983; Smith 1993), including the mean, which are of interest to 
decision makers. Because the moments of a PDF do not uniquely 
determine the underlying PDF (an infinite number of distributions 
have a mean of zero and a variance of unity, for example), the 
discretization methods discussed in this paper, and used throughout 
the oil and gas industry, may fail to match particular percentiles 
of the PDF or extreme values even though they match many 
moments. This important and underappreciated distinction means 
that calculating the probability of exceeding particular values of 

the output variable (e.g., the probability of exceeding zero) on the 
basis of a cumulative distribution that comprises several discretized 
input uncertainties may not be justified. We do not address this 
issue here. Rather, our goal will be to match the moments of the 
input PDFs, with the caution that this process is designed only to 
estimate the moments of the output distribution.

Several discretization methods are in common use. For exam-
ple, SM, which weights the 10th, 50th, and 90th percentiles of F(x) 
by 0.30, 0.40, 0.30, is heavily used within the oil and gas industry 
(Megill 1984; Hurst et al. 2000; Rose 2001). However, SM is 
neither the only nor, as we shall see, the best choice. 

Interest in discretization methods within the oil and gas industry 
has recently increased. For example, Arild et al. (2008) compared 
the use of SM to MC simulation in the context of a value-of-
information problem. They demonstrated that the two methods 
yield different results, but they were unable to comment on which 
approach is closer to the true value of information because their 
problem did not have an analytic (closed-form) solution. Prange 
et al. (2009) compared a numerical approximation method to a 
discretization method and found that the discretization was inac-
curate. Thus, these two papers have suggested the use of MC 
simulation instead of discretization. Willigers (2009), on the other 
hand, recommends the use of discretization instead of MC simula-
tion to reduce the number of computations and speed the analysis 
of asset portfolios.

This paper is organized as follows. In the next section, we 
review the theory underlying discrete approximations and discuss 
the accuracy of common methods. In the third section, we discuss 
the accuracy of discretization methods and the demonstrably poor 
performance of SM. In the fourth section, we contrast the use 
of discrete approximations to MC simulation and demonstrate 
that the best discretization methods are equivalent to hundreds 
of thousands of MC trials. We provide a simple example in the 
fifth section that demonstrates that different discretizations yield 
different value estimates and possibly different recommendations 
for action. Finally, in the sixth section, we conclude and provide 
recommendations for practice.

Discrete Approximations: Methods and 
Shortcuts
Before we discuss specific discretization methods, we begin with 
a brief review and introduce the notation we use throughout the 
paper. The kth raw (or uncentered) moment of RV X with PDF 
f(x) is

mk
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where E[-] is the expectation operator. The zeroth raw moment 
specifies that the probabilities must integrate (or sum) to unity. 
The first raw moment µ1 is the mean. Raw moments measure the 
distribution of an RV about the origin. Central moments, on the 
other hand, measure the distribution about the mean. (Central 
moments are simply raw moments of the transformed variable 	
Y = X – µ1.) The kth central moment of X is

m E X x f x x kk
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The second central moment is the variance and is given the special 
symbol 2.
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There is a one-to-one relationship between the raw and central 
moments. For example, if one knows the raw moments µk, the 
central moments can be found as follows (Papoulis 1984):
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Hence, the second central moment, the variance, expressed in 
terms of the raw moments, is m E X E X2 2 1

2 2 2= − ≡ − ( )m m [ ] [ ] .
Two normalized central moments, skewness and kurtosis, mea-

sure other properties of the distribution. Skewness is a measure of 
asymmetry and is given by g3 3 2

3 2= −m m / . Kurtosis measures the 
distribution’s degree of “peakedness” or how thick its tails are. 
Kurtosis is defined as g4 4 2

2 3= −−m m . The minus three normalizes 
kurtosis relative to the normal distribution, which has a kurtosis 
of three.

The Motivation for Moments. Suppose we are interested in a 
value function v(x), which is a function of an RV X. This value 
function might be net present value (NPV) or ultimate hydrocar-
bon recovery. If this value function is sufficiently differentiable, 
such that it can be approximated by a polynomial P(x) of degree 
N, then we have
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for the weights wk. [This discussion closely follows Smith (1993).] 
The mean, or expected value of v(x) is given by
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Thus, the expected value of v(x) is an expansion of the raw 
moments of X. Therefore, if one wants to accurately compute the 
expected value of the value function (e.g., expected NPV), all the 
moments of f(x) must be represented accurately. It is not sufficient, 
as is sometimes assumed, to accurately reflect only the mean value 
of input uncertainties. To make this concrete, suppose that v(x) = x2	

and that X is a normal RV with zero mean and unit variance. The 
expected value of v(x) is equal to unity, while v evaluated at the 
expectation is equal to zero. Our goal then will be to develop 
discretization methods that preserve the moments of input distri-
butions. Before we discuss particular discretizations, however, we 
will formally state the approximation problem.

Formal Statement of Approximation Problem. Given a PDF 
f(x) and function (x), we wish to approximate a definite integral 
with a finite sum,
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by choosing values xi and weights (or probabilities) pi. 
In other words, we seek to approximate the PDF with a discrete 

probability mass function (PMF). This procedure, originally devel-
oped by Gauss in the nineteenth century (Gauss 1866), is known as 
Gaussian quadrature. If  is a polynomial then the approximation 
in Eq. 6 holds with equality (Davis and Rabinowitz 1984). 

In this paper, we analyze the particular case ( )x xi i
k= , where 	

k = 0, 1, 2, … represents the kth raw moment of X. Thus, we have
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for a set of probabilities pi and values xi; our challenge is to find 
these parameters. As an example, consider k = 0, in which case Eq. 7 
requires that the discrete probabilities sum to unity. When k = 1, Eq. 
7 requires that we match E[X], or the mean, and so on. This appli-
cation of Gaussian quadrature is referred to as moment matching 

(Miller and Rice 1983; Smith 1993). An approximation with N 
points can match 2N moments of X, including the zeroth moment 
(Stroud and Secrest 1966; Miller and Rice 1983). For example, a 
three-point approximation can match the zeroth through the fifth 
moment of X. This remarkable fact enables one to preserve many 
characteristics (mean, variance, skewness, kurtosis) of commonly 
used distributions with a limited number of points, assuming these 
moments are finite. 

Gaussian quadrature provides both an organizing framework 
for understanding the objective of discretization and a computa-
tional method for determining the best approximation. However, 
many commonly used approximations fail to match some or all 
of the moments of X. We discuss the differing approaches in the 
following subsections, which we divide into general methods and 
shortcuts. The general methods are intended for use on a case-by-
case basis and are tailored to the underlying PDF. The shortcuts 
are nonparametric in that they are discretizations that are applied 
to any PDF, irrespective of its shape. Typically, these are discreti-
zations that were found to work reasonably well over some set of 
commonly encountered PDFs but are applied more generally than 
might be warranted.

General Discretization Methods. In this subsection, we describe 
three general discretization methods: moment matching, bracket 
median, and bracket mean.

Moment Matching. The most accurate general method for 
matching moments is, of course, Gaussian quadrature or moment 
matching itself. (While we are using a special case of Gaussian 
quadrature, where ( )x xi i

k= , we will use the terms moment 
matching and Gaussian quadrature interchangeably.) This approach 
can be applied to any PDF for which the moments are known. 
Quadrature rules have been calculated and published for several 
commonly encountered PDF families. For example, Miller and 
Rice (1983) presented the two-, three-, and four-point Gaussian 
quadratures for the standard uniform, normal, and exponential 
distributions. We repeat these results in Table 1. [Miller and Rice 
provided their results to six significant figures, but we round these 
to three significant figures to facilitate communication. Readers 
requiring greater accuracy should consult Miller and Rice (1983).] 
However, instead of providing the values xi we provide the per-
centiles of the excess distribution function (EDF), also called the 
complementary CDF, which is used more frequently than the CDF 
in oil and gas settings. These percentiles are i ≡ G(xi) × 100 = 
[1 – F(xi)] × 100. 

We summarize an approximation as the set of probabilities 
and percentiles (pi; i). As shorthand, we will refer to the Zth 
percentile of the EDF as the PZ. For example, the 50th percentile 
is the P50. The two-point approximation of the normal distribution 
may be summarized as (0.500, 0.500; P84.1, P15.9). The three-
point approximation of the normal is (0.167, 0.667, 0.167; P95.8, 
P50.0, P4.2). This simple approximation will match the first six 
moments of the normal distribution, including the requirement that 
the probabilities sum to unity. It may help the reader to think of 
the discretizations in Table 1 as probability trees. For example, the 
three-point approximation for the normal is shown in Fig. 1.

In the case of the uniform distribution, Gaussian quadrature 
does not result in equal weights on uniformly dispersed values. 
For example, one might think that an equal weighting of the P75, 
P50, P25 would perfectly match the uniform distribution because 
both the values and the probabilities have been divided uniformly. 
In fact, this approximation underestimates the variance by 50%. 

Bracket Median and Bracket Mean (or Equal Areas). In two 
intuitively appealing methods, bracket median (Clemen and Reilly 
2001) and bracket mean (McNamee and Celona 1990), the excess 
distribution G(x) is divided horizontally into N intervals, as shown 
in Fig. 2.

It is common for the intervals to be of unequal size in the 
bracket-mean approach and of equal size in the bracket-median 
approach, although in neither case is it required. The probability 
that X will be in Interval i is Gi – Gi-1. Given that X is in Interval 
i, we summarize the conditional distribution of X (conditional on X 
being within the interval) by a single number. Bracket median takes 
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this number to be the median, while bracket mean uses the mean. 
Because these conditional distributions are generally skewed, the 
median and the mean differ and the two approaches may result in 
(very) different discretizations. For example, applying the three-
point bracket-median and bracket-mean methods with intervals of 
0.25, 0.50, 0.25 to the normal distribution yields discretizations of 
(0.25, 0.50, 0.25; P87.5, P50.0, P12.5) and (0.25, 0.50, 0.25; P89.8, 

P50.0, P10.2), respectively. The difference between the approaches 
is greater for skewed distributions such as the log-normal.

The advantage of the bracket-median approach is that the 
median of each interval is simply that interval’s midpoint, Gi-1 + 
(Gi – Gi-1)/2, which can be read directly off of the excess distribu-
tion, whereas, the mean of each interval must be calculated. For 
certain distributions, such as the normal, this calculation is straight-
forward. For other distributions, including subjectively assessed 
distributions that may not belong to any family, this calculation 
may be complex. However, there is a graphical method to estimate 
the interval means that gives bracket mean its more common name 
of equal areas. As shown in Fig. 2, the mean of each Interval i is 
the point at which the area Ai to the left and above the excess dis-
tribution is equal to the area below and to the right. The interested 
reader should see McNamee and Celona (1991, pp. 18–21) for a 
proof of this fact. In the first author’s experience, individuals are 
skilled at finding these points by eye.

Discretization Shortcuts. The general methods discussed previ-
ously can be tailored to the shape of the distribution. For example, 
the intervals in equal areas need not be symmetric and extra atten-
tion can be placed on particular portions of the distribution, such as 
the tails. Yet, this flexibility comes at a cost—one must compute the 

TABLE 1—TWO-, THREE-, AND FOUR-POINT GAUSSIAN QUADRATURE FORMULAE FOR 
COMMON DISTRIBUTIONS 

Distribution Two Points Three Points Four Points 
pi i pi i pi i 

Uniform 0.500 78.9 0.278 88.7 0.174 93.1 

0.500 21.1 0.444 50.0 0.326 67.0 

  0.278 11.3 0.326 33.0 

    0.174 6.9

Normal 0.500 84.1 0.167 95.8 0.046 99.0 

0.500 15.9 0.667 50.0 0.454 77.1 

  0.167 4.2 0.454 22.9 

    0.046 1.0 

Exponential 0.841 55.7 0.711 66.0 0.603 96.8 

0.146 3.3 0.279 10.1 0.357 17.5 

  0.010 0.2 0.039 1.1 

    0.001 0.01 

f (x  1 = )

0 ≤ x ≤  1 
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2f x E x p x
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Fig. 1—Three-point Gaussian quadrature for the normal dis-
tribution.
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appropriate discretization. For this reason, several shortcut meth-
ods have been developed. In what follows, we discuss the approxi-
mations in the order in which they were originally proposed.

Pearson and Tukey (1965) developed a three-point discretiza-
tion meant to closely approximate the mean of common PDFs, 
including the normal, beta, gamma, inverse gamma, and Student’s 
t distributions (the uniform was not included). Their three-point 
approximation of the mean is (0.185, 0.630, 0.185; P95, P50, P5), 
which was found to work well except for distributions that were 
highly skewed. Pearson and Tukey did not recommend this approx-
imation for higher moments and instead provided a more complex 
approximation for the standard deviation. However, Keefer and 
Bodily (1983), on the basis of work by Keefer and Pollock (1980) 
and their own supporting analysis, suggested treating the Pearson-
Tukey approximation as a complete PMF and referred to this as 
extended Pearson-Tukey (EPT).

The equal-areas method discussed previously was developed by 
Jim Matheson and his colleagues at the Stanford Research Institute 
(SRI) between the late 1960s and the early 1970s (personal com-
munication with Jim Matheson and Peter McNamee). Application 
of this method to the normal distribution produces an approximation 
of (0.25, 0.50, 0.25; P89.8, P50, P10.2). On the basis of this, SRI 
began using a shortcut of weighting the P90, P50, P10 by 0.25, 0.50, 
0.25, which is sometimes referred to at the 25-50-25 approximation. 
This method was then heavily used and popularized by Strategic 
Decisions Group (SDG), which was founded by individuals from 
SRI’s decision analysis group. SDG trained hundreds of oil and gas 
professionals in decision analysis methods and helped to establish 
existing decision analysis programs at several major corporations, 
including Chevron; this explains the use of 25-50-25 in oil and gas 
settings. The shortcut is described in McNamee and Celona (1990, 
pp. 32–33)) and has come to be known as the McNamee and Celona 
shortcut (MCS). McNamee and Celona, SDG consultants at the 
time, cautioned that this shortcut should be used only in the early 
stages of analyzing a decision and that one needs to carefully assess 
the distribution and develop a full discretization (using equal areas) 
“more carefully later on! [emphasis in original]” (McNamee and 
Celona 1990). Over time, this guidance has been widely forgotten, 
and today MCS is commonly applied without regard for the shape 
of the underlying distribution and is not followed with a secondary 
and more careful assessment and discretization. 

While working for Exxon, Roy Swanson, in a 1972 internal 
memo, proposed approximating mean reserves by weighting the 
P90, P50, P10 of the reserves EDF by 0.30, 0.40, 0.30 (Megill 1984 
in Appendix B; Hurst et al. 2000). Following the preceding discus-
sion, we will refer to this as a 30-40-30 weighting. According to 
Megill (1984), Swanson arrived at this rule empirically and found 
that it reasonably approximated the mean of modestly skewed 
distributions. Like Pearson and Tukey before him, Swanson (appar-
ently) did not propose using his approximation to estimate higher 
moments or as a complete PMF. However, Keefer and Bodily 
(1983) proposed treating Swanson’s 30-40-30 rule as a complete 
PMF and referred to it as extended Swanson-Megill (ESM). The 
general use of ESM, especially in the case of the log-normal, has 
been advocated by Pete Rose and his colleagues at Rose & Asso-
ciates (Hurst et al. 2000; Rose 2001). As we will see later, ESM 
is close to a Gaussian quadrature for the normal distribution that 
matches the mean and variance. However, when directly applied 
to a log-normal distribution, ESM fails to match the mean and 
significantly underestimates the variance and the skewness.

Before discussing the other discretization methods, we pause 
briefly so that we can emphasize the difference between developing	

an approximation of the mean and an approximation of the PDF. 
A mean does not uniquely determine a PDF; there are an infinite 
number of PDFs with the mean of 5, for example. Therefore, 
one could very easily find an approximation that matches the 
mean, but fails to faithfully represent the underlying PDF. This 
is the case with SM. Swanson did not suggest using his method 
to approximate the PDF of reserves; he only suggested that it be 
used to approximate the mean. However, approximations that work 
well only for the mean are not particularly useful in most deci-
sion analyses. Using a discretization in a probability or decision 
tree as shown in Fig. 1 implicitly assumes that it is an accurate 
representation of the PDF, not just the mean of that PDF. Thus, 
strictly speaking, Swanson’s method cannot be used in a decision 
tree because it was intended merely to be a method for estimating 
the mean of a distribution. When Swanson’s values (0.30, 0.40, 
0.30; P90, P50, P10) are used in a decision tree, it is really an 
application of ESM that describes a PMF.

Returning to our discussion of the various shortcuts, Miller 
and Rice (1983) introduced the use of Gaussian quadrature to the 
decision analysis literature. As detailed earlier, this method can 
exactly match as many moments of any PDF as desired, as long as 
the moments are finite. However, in practice it would be helpful to 
have these discretizations precalculated. This is possible in the case 
of known PDF families, as shown in Table 1. When one is dealing 
with a distribution that is not from a known family (as might happen 
if the distribution is directly assessed by an expert, for example), 
Miller and Rice proposed several generic discretizations based on 
Gaussian quadrature. For a three-point approximation, Miller and 
Rice proposed weighting the P91.5, P50.0, and P8.5 by 0.248, 0.504, 
0.248. This approximation has become known as the Miller-Rice 
one step (MRO). Notice that MRO is very close to the bracket-mean 
approximation applied to a normal distribution and MCS. This cor-
respondence further supported MCS and SDG’s use of it.

D’Errico and Zaino (1988) and Zaino and D’Errico (1989) used 
Taguchi’s method (Taguchi 1978) to develop two approximations. 
The first equally weighs the P89, P50, P11, which we refer to as the 
Zaino-D’Errico-Taguchi (ZDT) approximation. The second applies 
the three-point Gaussian quadrature formula for the normal distri-
bution (0.167, 0.667, 0.167; P95.8, P50.0, P4.2), displayed in Table 
1, more generally. We will refer to this approximation as GQN. We 
summarize each of the discretization shortcuts in Table 2.

Moment Matching With Fixed Values or Fixed Probabilities. 
After many years of use, approximations with values fixed at 
the P90, P50, P10 (MCS and ESM) or weightings of 25-50-25 
(MCS) or 30-40-30 (ESM) have become common. Yet, the ESM 
and MCS shortcuts are not distribution specific and, therefore, 
may induce unnecessary errors. In this subsection, in an effort to 
improve practice, we apply moment matching to develop rules 
for (a) weighting the P90, P50, and P10 and (b) values with fixed 
weights of 25-50-25 or 30-40-30. We consider the uniform, nor-
mal, exponential, and triangular distributions. These results appear 
in Tables 3 through 5. 

As seen in Table 3, the weights for the normal are nearly 
identical to ESM. As such, ESM almost matches the mean and 
variance of a normal distribution. The listed triangular results 
are for a mode, c, of 0.5. However, the weights are a very weak 
function of c. For example, when c = 0.1 the weights are (0.277, 
0.451, 0.272). Thus, the values listed in Table 3 should provide 
satisfactory results in most situations.

It is not always possible to fix the values and find a feasible 
solution (Smith 1993). For example, a weighting of a log-normal’s 

TABLE 2—THREE-POINT DISCRETIZATION SHORTCUTS 

EPT MCS ESM MRO GQN ZDT 

pi i pi i pi i pi i pi i pi i 

0.185 95.0 0.250 90.0 0.300 90.0 0.248 91.5 0.167 95.8 0.333 89.0 
0.630 50.0 0.5000 50.0 0.400 50.0 0.504 50.0 0.667 50.0 0.333 50.0 
0.185 5.0 0.250 10.0 0.300 10.0 0.248 8.5 0.167 4.2 0.333 11.0 
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P90, P50, P10 that will simultaneously match the mean and vari-
ance is very often impossible to find if the underlying distribution 
is even modestly skewed. This underscores the futility of the 
common practice of applying ESM or MCS without regard for 
the underlying distribution or, indeed, instead of considering the 
nature of that distribution. To remedy this, in Table 6 we present 
several approximations for the log-normal with any mean but the 
listed standard deviation (in terms of ln X), using four points. These 
approximations will match the mean and variance when applied 
directly to log-normal distributions with the stated standard devia-
tion; as we discuss more fully later, matching the skewness of a 
log-normal is very difficult. The values that we have found to work 
well are the P90, P50, P5, and the mode (most likely value). If 
X is log-normally distributed, then the mode of X is EXP[μ – ], 
where m = E[ln X] and  2 = E[((ln X) – m)2].

Accuracy of Discretization Methods
Given the variety of discretization methods, the question naturally 
arises as to which approximation is best. Or, perhaps more cor-
rectly, in which situations do the various approximations perform 
well or poorly? When the PDF is from a family given in Table 1 
(or Tables 3–6), the Gaussian quadrature formulas exactly match 
the first 2N underlying moments of the original PDF, by definition. 
Thus, they can be taken as the highest standard of accuracy.

Miller and Rice (1983) proved that equal areas will always 
underestimate the even moments of the original distribution. This 
occurs because xk is convex when k is even and, by Jensen’s inequal-
ity (E[v(X)] ≥ v(E[X]), if v is a convex function.), the expectation	

of a convex function will exceed the value of the function evalu-
ated at the expectation. In the case of odd k, the direction of the 
error is more difficult to sign. If x is positive (negative) then the 
odd moments will be underestimated (overestimated), since xk 
is convex (concave). Thus, direct application of equal areas to a 
log-normal distribution (which cannot take negative values) will 
underestimate all moments. 

Keefer and Bodily (1983) tested EPT and ESM (among oth-
ers) across a range of beta distributions, which can assume a wide 
variety of shapes and thus higher moments. They concluded that 
EPT is the “clear winner.” Both EPT and ESM approximated the 
mean reasonably well; the average (maximum) errors were 0.02% 
(0.07%) and 0.05% (0.33%) for EPT and ESM, respectively. How-
ever, the two approaches differed in their ability to approximate the 
variance. The average (maximum) errors were 0.46% (–1.6%) and 
2.7% (11.1%). Keefer (1994) extended the analysis of Keefer and 
Bodily (1983) by analyzing the accuracy of MCS, MRO, GQN, and 
ZDT across a range of beta distributions. In terms of estimating the 
mean and variance, he found that EPT slightly outperformed GQN, 
and that they both dominated ESM, MRO, MCS, and ZDT.

Swanson’s (Inaccurate) Mean. Given the widespread use of ESM 
in the oil and gas industry, and the fact that it is being used as 
intended, which is not the case for MCS, it seems appropriate to 
scrutinize its accuracy. (The reader should bear in mind that MCS 
was never recommended as a final approximation, as ESM has 
been.) The studies discussed in the preceding demonstrated the 
rule’s inability to accurately approximate the variance of many 

TABLE 3—THREE-POINT MOMENT-MATCHING WEIGHTS FOR P90, P50, P10 VALUES 

Uniform Normal Exponential Triangular* 

 

( ) 1f x =  ( )
211

22( ) 2
x

f x eπ
−−=  −=( ) xf x e  2( )

( )( )
2( )( )

( )( )
0 otherwise

x a a x c
b a c a
b xf x c x b

b a b c

− ≤ ≤ − −
−= < ≤ − −





[0,1]x∈  ( ,  x∈ −∞ ∞  x ≥ 0 [ 0, 1, 0.5]x a b c∈ = = =  

 372.0 564.0 403.0 062.0

 454.0 571.0 293.0 084.0

 372.0 063.0 403.0 062.0
*Note: Triangular discretization is a function of c, but this relationship is weak enough to ignore. 

)

TABLE 4—THREE-POINT MOMENT-MATCHING VALUES 
FOR 25-50-25 WEIGHTS (SAME PDFs AS TABLE 3) 

Uniform Normal Exponential Triangular 

P75.0 P92.1 P93.3 P78.9 
P62.1 P50.0 P44.6 P50.0 
P0.9 P7.9 P11.2 P21.1 

TABLE 5—THREE-POINT MOMENT-MATCHING VALUES 
FOR 30-40-30 WEIGHTS (SAME PDFs AS TABLE 3) 

Uniform Normal Exponential Triangular 

P74.9 P90.2 P91.8 P76.4 
P64.0 P50.0 P42.3 P50.0 
P6.5 P9.8 P9.5 P23.6 

TABLE 6—REPRESENTATIVE FOUR-POINT DISCRETIZATIONS FOR LOG-NORMAL 

σ = .25 σ = .50 σ = .75 σ = 1.0 
γ3 = 0.78 γ3 = 1.75 γ3 = 3.26 γ3 = 6.18 

pi αi pi αi pi αi pi αi 

0.203 90.0 0.151 90.0 0.186 90.0 0.436 90.0 
0.288 59.9 0.265 69.1 0.235 77.3 0.274 84.1 
0.303 50.0 0.378 50.0 0.357 50.0 0.017 50.0 
0.206 5.0 0.206 5.0 0.222 5.0 0.272 5.0 
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distributions. In this section, we more carefully analyze the use 
of ESM to approximate log-normal distributions; since its incep-
tion, ESM has been used to summarize reserves distributions, and 
reserves are widely held to be log-normally distributed (Rose 2001). 
Likewise, Rose has advocated the use of ESM specifically for use 
with log-normal distributions (Rose 2001 in Appendix B).

Megill (1984) directly applies ESM to the log-normal and finds 
that ESM underestimates the mean by approximately 10% for 
modestly skewed distributions, which he associates with “typical 
prospect ranges.” However, he also finds that ESM underestimates 
the mean by 45% for more-skewed distributions, which he associ-
ates with “typical basin-play ranges for field size distributions.” 
Megill concludes that “Swanson’s rule should not be applied to 
obtain the mean of play or basin assessments.” We extend Megill’s 
analysis in Fig. 3, which plots the error in ESM’s estimate of the 
mean, variance, and skewness for a log-normal distribution, against 
the ratio of the P10 to the P50, which Megill intended to be a 
measure of skewness. As Megill stated, ESM underestimates the 
mean by up to 45% in this example. What Megill did not mention 
is that it also underestimates the variance by 80% for the typical 
prospect range and by 100% for more-skewed distributions. ESM’s 
estimation of the skewness is even worse. 

Rose (2001) supports his use of ESM by arguing that reserves 
above the P1 of a log-normal occur with much less than a 1% fre-
quency, and therefore the log-normal should be truncated above this 
point. Doing so reduces skewness and does improve the accuracy of 
ESM. However, Rose supports his argument by analyzing only the 
mean and examining a single log-normal distribution with a mean 
of 15.1 and a standard deviation of 28.2—implying a skewness 
of 3.9. In this case, ESM underestimates the true mean by 1.5%. 
However, it also underestimates the variance by 59% and the skew-
ness by 78%. Furthermore, under a different truncated log-normal 
distribution with a skewness of 4.9, ESM underestimates the mean 
by 10%, the variance by 77%, and the skewness by 83%.

SM can be directly applied to log-normal distributions by 
applying it to the logarithm of X, instead of directly to X. If X is 
log-normally distributed, then ln X is normally distributed and the 
moments of X are functions only of the mean μ and variance  2 of 
ln X. The equations for the first four moments of X appear below:

m m 1
1
2

2( )X = + exp   . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              (8)

m X2
2 22 1( ) = +    −( )exp expm      . . . . . . . . . . . . . . . . .                  (9)

g  3
2 2 1 2

2 1( ) [ ] [ ]
/

X = +( ) −( )exp exp  . . . . . . . . . . . . . . . . . .                  (10)

g   4
2 2 24 2 3 3 2 6( )X =   +   +   −exp exp exp .��   . . . . . .       (11)

To use SM, we would simply determine m and  2 by applying 
the 30-40-30 approximation to ln X, which is normal. Substitut-
ing these values into Eqs. 8 through 11 would almost perfectly 
match the first four moments of X, which is log-normal. This 
approach would reduce all the errors in Fig. 3 to zero. This log-
SM approximation is a significant improvement over SM and is 
only slightly more complicated—requiring the use of a logarithm 
and of an exponential. 

If we want to truncate the log-normal distribution at, say, the 
P1, we simply need to truncate the underlying normal distribu-
tion at the P1, which is elementary. Then we can find a Gaussian 
quadrature for this truncated normal. For example, if we want to 
truncate the log-normal at the P1, a Gaussian quadrature of (0.32, 
0.37, 0.31; P89.1, P50, P9.9) of the original untruncated normal 
will exactly match the first three moments of the normal and, 
therefore, the log-normal distribution. This approximation would 
reduce all of the errors in Rose’s (2001) example to zero.

Why Not Just Simulate?
Thus far, we have compared discretization methods among them-
selves and found that some, such as ESM and naïve uses of MCS, 
produce significant errors. One may wonder then, given the wide-
spread availability and use of MC methods, why use discretization 
at all? (As one analyst argued, “After all, my Monte Carlo software 
package includes the log-normal distribution.”) We must remember 
that MC is also an approximation. Discretization methods induce 
approximation error, while MC methods include sampling error. 
The relevant question is whether or not MC is more accurate 
than discretization and which situations lend themselves to each 
method. To address this, this section offers some reasons as to why 
one may prefer to use discretization rather than simulation. More 
importantly, we determine how many MC samples are required to 
achieve the same accuracy as each discretization method. 

Modeling Difficulties. From a modeling perspective, MC simula-
tion is not easy to implement in situations that include downstream 
decisions or options. A generic example appears in Fig. 4. In this 
case, a decision D1 is made at the beginning of Stage 1. Then, 
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a possibly continuous uncertainty X is revealed, yielding a par-
ticular value x. At the start of Stage 2, decision D2 is made, with 
knowledge of D1 and x. Then, the possibly continuous uncertainty 
Y is realized. To make this situation concrete, suppose that D1 is 
a decision about the acquisition of seismic data, X is the result of 
the seismic survey, D2 is the decision to drill, and Y is the eco-
nomic value of the reservoir (Stibolt and Lehman 1993; Bickel 
et al. 2008).

To evaluate this decision tree, we start at the end and roll back 
(McNamee and Celona 1990; Clemen and Reilly 2001). Suppose 
we only seek to maximize expected values (i.e., we are risk neutral) 
and that X and Y are dependent. In this case, we would need to 
compute E[Y | X = x] to choose the optimal alternative at Stage 2. 
If this conditional mean cannot be expressed as a function of x, 
we must simulate Y for each realization of X. If we are performing 
1,000 MC trials, for each of the 1,000 trials for X, we would have to 
perform an additional 1,000 trials for Y | X = x, requiring 1,0002 or 
1 million trials. This nested MC simulation is not straightforward 
to implement and may require a long time to evaluate.

Costly Evaluation. The second reason one may prefer discretiza-
tion methods is that they require fewer points (generally many 
fewer points) to match the underlying moments. Because each 
point or MC trial requires the evaluation of an output function (e.g., 
NPV), this process may be computationally costly. To understand 
this more fully, we can determine the number of MC samples that 
would be required to achieve the same accuracy as a discretization 
method (Pfeifer et al. 1991). We refer to this as S-equivalence.

The N-point Gaussian quadratures in Table 1 exactly match 
the first 2N moments of the uniform, normal, and exponential 
distributions. Even in the case when N = 2, these approximations 
exactly match the mean, variance, and skewness of the original 
distributions. As such, MC could not do a better job approximating 
these moments. The shortcuts listed in Table 2 may, on the other 
hand, fail to match some moments of certain distributions. We will 
determine S-equivalents for these shortcut-distribution combina-
tions. On the basis of Eq. 5 and for ease of exposition, we focus 
only on the raw moments.

Uncertainty in Moments. Imagine creating a new distribution 
Y Xk

k=  from which we will sample in order to estimate the raw 
moments of X. The mean of Yk , mk , is the kth raw moment of X. 
For example, if k = 1, then we would simply sample from X. Each 
set of S samples would produce an estimate of the mean of X. 
However, each time we rerun our MC simulation using S samples, 
we would compute a different mean. In other words, the sample 
raw moments are random variables. We quantify their uncertainty 
by computing their central moments (e.g., the variance). The jth 
central moment of Yk  is 

m E Y E Y E Xj
k

k k
j k

k
j≡ − = −[( [ ]) ] [( ) ]m .��  . . . . . . . . . . . . . . . .                 (12)

If k equals 1 and j equals 2, then we have

m E X2
1

1
2

2 1
2≡ − = −[( ) ]m m m ,��   . . . . . . . . . . . . . . . . . . . . . . .                        (13)

which is the familiar formula for the variance written in terms of 
raw moments. When referring specifically to the variance of the 
kth raw moment, we will use the expression   k k k

2 ≡ .
Discretization Accuracy. Let ck be the difference between the 

true moment mk and the approximate moment m̂k, obtained by means 
of a discretization. It will be useful to normalize this difference by 
the standard deviation of the moment, which may be obtained with 
Eq. 12. We write the accuracy of the approximation as

d
m m


k

k

k

k k

k

c

m
= = −

2

ˆ
.��   . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              (14)

Computing S-Equivalence. Now, suppose that instead of using 
a discretization, we estimate mk by means of MC simulation. Let 
the estimated value, which is an average, given S samples be mk S; .	
According to the central limit theorem (CLT), mk S;  is normally dis-
tributed with mean mk and variance  k S2 /  for large S. Thus, the prob-
ability that the simulation will more accurately estimate mk than the 
discretization method is (see Appendix A for derivation) given by

P c xk S k km m; − ≤( ) = ( ) −2 1 ,��  . . . . . . . . . . . . . . . . . . . . . .                       (15)

where x Sk= d  and  is the standard normal CDF. If we want 
this probability to be τ, then we must take 

S k= +





− −d
2 1

2
1

2
 . � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               (16)

samples (see Appendix A for derivation). For example, if we want 
the simulation to have a 95% chance of estimating the kth raw 
moment more accurately than the discretization, we must take 
S k k= ( ) ≈ ⋅− − −d d2 1 2 2 21 95 2 1 96 . / .  samples. Thus, Eq. 16 establishes 
an equivalence between discretization and simulation (Pfeifer et al. 
1991). [Pfeifer et. al (1991) determined S-equivalence for match-
ing the mean. They did not consider higher moments or use the 
Edgeworth expansion, as we do here.] 

Eq. 16 will not work well when the underlying random variable Xk 
is highly skewed or kurtotic. In these cases, the CLT approximation 
may not be accurate for the number of trials that Eq. 16 says we need 
to perform. The CLT holds under quite general conditions and states 
that the sum of an infinite number of random variables converges in 
distribution to the normal. However, it does not specify how quickly 
this convergence will take place. In this case, we must rely on the 
Edgeworth expansion (Cramér 1946; Hall 1992), which corrects 
the CLT for higher underlying moments. For the distributions we 
consider here, this issue primarily affects the log-normal distribution 
and, to a lesser degree, the exponential. In this case, the probability 
that the MC simulation will estimate mk more accurately than the 
discretization method is (see Appendix A for derivation) given by
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where x Sk= d , as before, and  is the standard normal PDF. The 
term O S( )−2  signifies that the remaining terms are at most of order 
S-2. The terms g m m3

3 3 2 3 2 3 2k
k k

k
k

k
km m E X E X= = − −− −/ /[( ) ] [( ) ]  and 

g m m4
4 2 4 2 2 3k
k k

k
k

k
km m E X E X= = − − −− −[( ) ] [( ) ]  are the skewness 

and kurtosis, respectively. If the skewness and kurtosis are zero 
(or small), or if S is very large, then Eq. 17 reduces to Eq. 15 and 
we can use Eq. 16 to find the equivalent number of samples. On 
the other hand, if the skewness and kurtosis are nonnegligible, then 
we must numerically solve Eq. 17 for S. 

Lerche and Mudford (2005a, 2005b) investigate the number 
of samples required to estimate the mean of several distributions 
including log-normal and exponential and base their estimates on 
the CLT. This approximation, while not fully appropriate, should 
not have induced substantial errors in their case because of their 
focus on estimating only the mean. However, we are interested in 
estimating higher moments, and these higher moments (e.g., E[X4]) 
will induce additional skewness and kurtosis and the CLT will 
fail to work well in these cases. For example, for the log-normal 
distribution that we discuss here, we find that Eq. 16 overesti-
mates the required number of samples by almost 25%. In the case 
of the log-normal, negative values are not possible. This causes 
Eq. 16, which is based on the CLT and assumes that the mean is 
normally distributed, to require more samples so as to reduce the 
variance of the mean enough such that negative values are very 
unlikely—at least less than (1 – 0.95)/2 = 2.5%. The Edgeworth 
expansion performs better by taking the kurtosis and the skewness 
into account. These normalized central moments are very large in 
the case of the log-normal—especially when we are considering 
the distribution of X3 and X4.

Table 7 provides the 95% S-equivalences based on Eq. 17 for 
the EPT, GQN, ESM, MCS, MRO, and ZDT shortcuts for the uni-
form U(0, b), normal N(0, s), triangular T(0, b, b/2), exponential 
E(l), and log-normal L(m, 1) distributions. These results hold for 
any (see Appendix A)

• Exponential distribution
• Uniform distribution bounded by zero on one side, U(0, b)
• Normal distribution centered at zero, N(0, s)
• Symmetric triangular distribution bounded by zero on one 

side, T(0, b, b/2)
• Log-normal distribution with unit variance (of ln X), L(μ, 1)
While the results in Table 7 do not hold for all possible distri-

butions within a given family, they should give the reader a sense 
for the magnitude of MC samples that are required to match a 
particular discretization. 

These results are striking. First, setting aside the fact that all 
the approximations we consider perfectly match the mean of sym-
metric distributions [U, N, T(a, b, b/2)], most of the shortcuts are 

equivalent to thousands, if not tens of thousands, of MC samples. 
For example, it would take 57,469 MC samples to have a 95% 
chance of estimating the second raw moment of an exponential 
with greater accuracy than EPT, which Pearson and Tukey (1965) 
did not even suggest using to estimate any moment beyond the 
mean. Second, EPT and GQN are clearly dominant, having larger 
S-equivalences than the other approximations. These approxima-
tions do very well on everything except the third moment of 
uniform distributions. Consider estimating the mean of log-normal 
distribution: EPT and GQN are equivalent to almost 12 and 65 
times more samples, respectively, than ESM (29,499 or 161,943 
compared to 2,495). Third, these results serve to emphasize our 
earlier conclusion that the performance of ESM and MCS is 
quite poor in some cases. For example, ESM and MCS are only 
equivalent to 941 and 676 MC samples, respectively, in terms of 
estimating the second moment of the L(μ, 1) distribution. (The 
discretization shortcuts do not provide unbiased estimates of the 
underlying moments. We do not address the issue of bias here. 
Rather, we assume that over- and underestimates of the moments 
are equally costly.) While the direction of this result is not surpris-
ing, given that we know these methods underestimate variance, its 
magnitude is striking. Use of ESM to model the uncertainty of a 
log-normal distribution, which occurs whenever it is applied to 
estimations of oil or gas reserves, is equivalent to running fewer 
than 1,000 MC trials!

A large S-equivalence is a result of two possible factors: (1) 
high accuracy of the discretization method and (2) the difficulty 
of simulating the underlying random variable. As a case in point, 
consider the EPT and GQN approximations of the log-normal 
distribution. The S-equivalences for estimating the mean are large 
because the discretizations estimate the mean closely. The S-
equivalences for the third moment are large because approximating 
the third moment of a log-normal distribution by means of MC 
simulation is very difficult, requiring many tens of thousands of 
MC samples. Given the large number of samples that are required 
in most cases, we see that discretization is a viable, and in some 
cases preferable, alternative to MC simulation. Of course, we are 
interested in preserving the moments of the output (e.g., NPV), 
which might be a function of many input uncertainties and several 
downstream decisions. We do not address this more complicated 
issue here. 

Does Discretization Matter?
“New” methodologies are often resisted on the grounds that they 
will not obviously make a material difference. (We place “new” in 
quotes because Pearson-Tukey predates Swanson-Megill by almost 
a decade and Gaussian quadrature predates all other methods by 

TABLE 7—95% S-EQUIVALENCES FOR DISCRETIZATION SHORTCUTS 

Raw  NQG TPE 

Moment U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) 

First (mean) ∞ ∞ ∞ >1MM*  ∞ ∞ ∞   
Second 4,830 >1MM 67,654 57,470 2,781 1,930 ∞ 644,360 >1MM 4,583 

>1MM 161,943

Third 1,940 ∞ 24,388 3,918 48,591 775 ∞ 231,941 14,592 56,102 

Raw ESM MCS 

Moment U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) 
First (mean) ∞ ∞ ∞ >1MM 2,495 ∞ ∞ ∞ 1,451 560 
Second 2,128 36,165 9,745 1,674 941 30,732 240 14,068 407 676 
Third 855 ∞ 3,508 498 34,475 12,347 ∞ 5,064 207 35,520 

Raw  TDZ ORM 

Moment U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) U(0,b) N(0,σ) T(0,b,b/2) E(λ) L(µ,1) 
First (mean) ∞ ∞ ∞ 13,529 1,702 ∞ ∞ ∞ 120,295 2,722 
Second 77,873 1,840 115,500 1,264 988 1,046 904,694 5,986 1,716 895 
Third 31,293 ∞ 41,584 554 35,758 420 ∞ 2,155 448 33,688 
*Note: >1MM = more than 1 million. 
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at least a century.) While we do not have space to fully address 
this issue here, we note that most of the methods presented in this 
paper are no more complicated than existing approximations, but 
are more accurate. For example,

• EPT and GQN are three-point approximations, like ESM and 
MCS, but are more accurate across a range of distributions. 

• The approximations given in Tables 3 through 5 are three-
point approximations that match the first three moments of the 
listed distributions—again, exceeding the performance of ESM 
and MCS.

• The four-point approximations given in Table 6 match the 
mean and variance of log-normal distributions, resulting in better 
performance than the three-point ESM and MCS shortcuts.

• The log-SM method that we outline will perfectly match all 
the moments of the log-normal and is only slightly more complex 
than SM.

• Other methods that we discuss, such as moment matching for 
distributions not listed in Tables 4 through 7, are more complex 
than current practice. However, this increase in complexity will 
increase the accuracy of the results (much in the same way that 
3D reservoir simulation is more complex, but more accurate, than 
2D simulation).

However, we realize that some will require convincing before 
changing their practice. To address this, we offer the following, 
necessarily simple, example.

Illustrative Example. Suppose an oil company is considering the 
purchase of a prospect that contains an uncertain volume of oil. 
For the sake of argument, suppose the reserves are believed to 
be log-normally distributed with a mean of 90 million BOE and 
a standard deviation of 118 million BOE. These parameters cor-
respond to a standard deviation for log reserves of 1.0, and, thus, 
we can make use of the four-point approximation given in Table 
6. To illustrate the accuracy of each approximation method, we 
will consider three different valuation scenarios. In the first, the 
company believes, on the basis of market transactions (Howard and 
Harp 2009), that proved reserves in this geographic location and 
depositional environment are worth USD 5 per BOE. This case 
is labeled “Linear” in Fig. 5. We also consider a case where the 
value function is convex and another that is concave. The concave 
case could correspond to a situation where the host government 
takes a small share of small fields to increase the probability of 
development but will take a proportionally larger share as field 
size increases. The convex case might represent large initial fixed 
costs, perhaps for infrastructure, that do not scale in proportion to 
field size. Whatever the case may be, the important point, as far as 
the example is concerned, is that discretization accuracy depends 
upon the shape of the value function. 

We next apply the discretization methods discussed in this 
paper to the reserves distribution and compute the expected 
NPV of the prospect. For the bracket-median and bracket-mean 
discretizations, we consider three- and four-point approximations 
with weightings of 25-50-25 and 10-40-40-10, respectively. We 
compare the approximate value from each discretization to the 
exact value, which we obtain by means of 100,000 MC samples. 
The error for each approximation is presented in Table 8. 

The errors in the linear case are simply the errors of each dis-
cretization in estimating mean reserves. We see that the four-point 
log-normal approximation and the EPT, GQN, and the bracket-
mean approaches estimate the expected NPV to within 1%. The 
other methods underestimate the mean by at least 5%; the bracket-
median approach is especially poor. Errors in the concave and con-
vex cases differ from the linear case because in these situations the 
variance (and other moments) of the input distribution is important. 
Because most of discretization methods misestimate the variance, 
they will misestimate the expected value of the output (NPV). The 
errors are less in the concave case because the concavity of the 
value function serves to reduce the impact of misestimating the 
variance of the input distribution. In the convex case, we see that 
the four-point log-normal and the four-point bracket mean perform 
very well. Table 9 presents the error in the variance of NPV. In 
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Fig. 5—Illustrative example used to show inaccuracy of various approximations.

TABLE 8—APPROXIMATION ERROR IN MEAN FOR 
ILLUSTRATIVE EXAMPLE 

Approximation Concave Linear Convex 

4-pt Lognormal –1% 0% 0% 
EPT 0% –1% –4% 
GQN 0% –1% –3% 
ESM –3% –5% –9% 
MCS –8% –11% –15% 
MRO –4% –6% –10% 
ZDT –2% –5% –9% 

3-pt Bracket Median –14% –17% –21% 
4-pt Bracket Median –10% –12% –16% 
3-pt Bracket Mean 2% 0% –4% 
4-pt Bracket Mean 1% 0% –2% 
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this case, we see that all the approximations underestimate the 
output variance. The performance of ESM, MCS, and the bracket-
median approaches are especially poor, while the four-point log-
normal and the four-point bracket-mean discretizations perform 
significantly better. Of course, the four-point log-normal and the 
bracket-mean approximations have been specifically tailored to 
the underlying distribution, which demonstrates the importance 
of this practice.

Is underestimating the mean by 10% and the variance by 50% 
a problem? Clearly, if the company is setting a purchase (or sale) 
price, underestimating the value of the prospect by 10% could 
undermine the opportunity. This would be especially true in a 
competitive situation, such as bidding. In addition, the optimal bid 
amount depends critically upon the company’s estimate of uncer-
tainty. Underestimating the variance by 50–80% may increase 
the probability of overpaying for the property. Thus, we see that 
discretization matters and could have a material impact on decision 
making. In what other part of the business would misestimating 
key performance metrics by 10–80% be acceptable?

Conclusion: Recommendations and Discussion
We conclude with a set of recommendations and observations 
regarding the oil and gas industry’s approach to probabilistic 
modeling.

Recommendations. If one is interested in estimating the moments 
of an output distribution, then closely matching the moments of the 
input distributions is a necessary requirement. In this case, the best 
discretization methods presented in this paper are very accurate, 
matching 2N moments (including the zeroth) with only N points. 
They could, therefore, be used instead of MC simulation, at least 
early in an analysis, to quantify uncertainty with only a few evalu-
ations of the output function. The primary recommendations that 
follow from our work are
• �For maximum accuracy, we should use moment matching and 

apply it directly to each input distribution. For several distribu-
tion families, the appropriate weights and values have already 
been calculated (see Table 1 and Tables 3 through 7). In other 
cases, the quadrature could be calculated on a case-by-case basis 
using methods detailed in Stroud and Secrest (1966), Miller and 
Rice (1983), Smith (1993), or Davis and Rabinowitz (1984), 
for example.

•�� �If moment matching is too difficult to implement or communicate 
then the equal-areas approach is not an unreasonable alternative. 
However, one must bear in mind that this approach will tend to 
underestimate the variance (and other higher moments).

•�� �If one wishes to fix the values at the P90, P50, P10 or weights at 
25-50-25 or 30-40-30 for communication, assessment, or compu-
tational reasons, then using the moment-matching discretizations 
in Tables 3 through 5 will result in maximum accuracy. 

•�� �When dealing with log-normal distributions, work with the log 
of the random variable, which translates it to a normal random 

variable. Then, apply the discretization methods to the trans-
formed variable.

•�� �SM (or ESM), MCS, and ZDT should not be used as part of a 
final analysis (recall that McNamee and Celona explicitly warned 
against using their shortcut in this way). Direct application of 
ESM to log-normal variables, as is common, to estimate their 
moments (e.g., mean, variance) should be considered an unac-
ceptable professional practice.

•�� �Well-chosen discrete approximations are equivalent to tens of 
thousands of MC samples. This argues for greater use of dis-
cretization methods.

Discussion and Conclusion. Despite attempts to justify it (Hurst 
et al. 2000; Rose 2001), SM has no theoretical justification for 
use with any distribution other than normal (direct use with the 
log-normal is especially error prone). Megill noted its problems 
nearly 40 years ago. Why would we expect MCS or ESM/SM (or 
the other shortcuts), which are symmetric, to preserve the mean 
of skewed distributions? [Some analysts have told us that MCS 
(25-50-25) is good for symmetric distributions, but that ESM 
(30-40-30) should be used when the distribution is skewed!] Why 
have we institutionalized a method known to be biased? Megill’s 
answer was that SM offers protection from uncertainty because 
its estimates are known to be biased low (Megill 1984). This is in 
much the same spirit as using a high discount rate or a low oil price 
to account for uncertainty. We do not support such adjustments; 
decision makers should be provided with unbiased estimates of the 
risks facing the company.

Another explanation for the acceptance of SM is the industry’s 
focus on the mean and “risking” a prospect (Bickel and Bratvold 
2008), to the exclusion of other moments. Paraphrasing Steven Jay 
Gould, “the mean is not the message” (Gould 1985). Risking a 
prospect does nothing either to understand the risk or to help man-
age it. It simply implies that the mean, the probability-weighted 
average, was calculated. Decision makers are not indifferent to 
all projects with the same mean. Rather, they want to understand 
the surrounding uncertainty and the risk. Furthermore, as dem-
onstrated by Eq. 5 and illustrated in the preceding section, one 
may not accurately determine the mean of an output distribution 
without accurately representing the mean and higher moments of 
the input distributions.

Why do we continue to use ESM when more-accurate alterna-
tives exist? Why do we spend millions of dollars on reservoir-simu-
lation models and then represent the output of those models in a 
decision tree with simplistic discretizations? Perhaps it is simply 
a matter of tradition and path dependence: “We have always done 
it this way,” “That is the way everybody else does it,” or “That 
is the way I was taught.” In fact, some companies mandate that 
either MCS or ESM be used in project valuations. We hope that 
our paper will encourage improved practice.

Nomenclature
	 ck	 = �difference between true moment and approximate 	

moment
	 E[–]	 = expectation operator
	 E(l)	 = exponential random variable with a mean of 1 l
	 f	 = PDF
	 F	 = CDF
	 G	 = excess distribution function
	L(m, s)	= �log-normal random variable with mean of ln X of m and 

standard deviation of ln X of s
	 mk	 = E[(X – µ1)

k] = kth central moment of X
	 N	 = number of discretization points
	N(m, s) = �normal random variable with mean of m and standard 

deviation of s
	 O	 = order of approximation
	 p	 = probability
	 P(x)	 = polynomial in x
	 PZ	 = Zth percentile of CDF

TABLE 9—APPROXIMATION ERROR IN VARIANCE FOR 
ILLUSTRATIVE EXAMPLE 

Approximation Concave Linear Convex 

4-pt Lognormal 30% 0% –57% 
EPT –18% –36% –72% 
GQN –11% –30% –69% 
ESM –45% –60% –83% 
MCS –53% –66% –86% 
MRO –42% –57% –82% 
ZDT –47% –62% –84% 

3-pt Bracket Median –66% –75% –90% 
4-pt Bracket Median –48% –60% –83% 
3-pt Bracket Mean –38% –54% –80% 
4-pt Bracket Mean –21% –37% –71% 
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	 S	= number of MC samples
	T(a, b, c)	= �triangular random variable between a and b with a 

mode at c
	 U(a, b)	= uniform random variable between a and b
	 v	= value function
	 x	= realization of random variable X
	 X	= random variable
	 ai	= percentile
	 g3	= skewness
	 g4	= kurtosis
	 dk	= accuracy of discrete approximation of kth moment
	 m̂k 	= kth moment obtained from discrete approximation
	 mk S; 	= kth moment obtained from average of S MC samples
	 mk	= E[Xk] = k-th raw moment of X
	 s2	= m2 = variance
	 	= standard normal CDF
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Probability the MC Simulation Will Be More Accurate Than 
the Approximation.
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S-Equivalence for CLT.
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Edgeworth Expansion. The first three terms of the Edgeworth 
expansion are
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where r is the rth cumulant, 2 is the variance, and 1 is the mean.
( )j  is the jth derivative of ( )j . Thus, ( ) ( )j j= − 1 , where  
is the standard normal PDF. The jth derivative of the standard 	

normal PDF is  ( ) ( ) ( )j j

jH x x= −( )1 , where H xj ( ) is the Hermite	

polynomial of order j. Thus, ( ) ( ) ( ) ( )j j j

jH x x= = −( )− −
− 1 1

11 . The 
Hermite polynomials are an even (odd) function when j – 1 is even 
(odd). Thus, we have
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In the discretization work, we are looking at the probability of 
being within the interval [–x , x], which is FS(x) – FS(–x). Because 
Hj is even when j is even and (x) is an odd function, the terms 
of order S-j/2 will cancel in the subtraction when j is odd and we 
will be left with
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where g3 is the skewness and g4 is the kurtosis. The third and fifth 	
Hermite polynomials are H x x x3

3 3( ) = −  and H x x x x5
5 310 15( ) .= − +

 

H x x x x5
5 310 15( ) .= − +  Substituting these values into Eq. A-5 yields Eq. 17.

Exponential S-Equivalence. The inverse CDF for the exponential 
is F i i

− −= − −1 1 1( ) ln( ) l  . The approximate moment for approxi-
mation A is then
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The kth raw moment of the exponential is 

m lk
k k= − +− ( )1 .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                (A-7)

The variance of the kth raw moment is 
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We see that d is independent of l and that the S-equivalences that 
we list in Table 7 hold for any exponential PDF.

Uniform S-Equivalence. The inverse CDF for the uniform is
F a b ai i
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The true kth raw moment of the uniform is 
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The variance of the kth raw moment is 
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Thus, we have 
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If a = 0, then we have
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and we see that d is independent of b and that the S-equivalences 
that we list in Table 7 hold for any U(0,b). If a is nonzero, then 
S-equivalences will differ from those shown in Table 7.



140	 July 2011 SPE Economics & Management

Normal S-Equivalence. The inverse CDF for the normal is
F i i
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approximation A is then
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In the case of the normal, the raw moments are quite complex and 
we restrict our attention to the case where µ = 0. In this case, the 
true kth raw moment of the normal is 
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Similarly, the variance of the kth raw moment is
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Thus, we have 
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and we see that d is independent of s and that the S-equivalences 
that we list in Table 7 hold for any N(0, s).

Triangular S-Equivalence. The inverse CDF for the triangular is 
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The approximate kth raw moment for approximation A is then
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where Nc is the approximation Point i at which F(c) = ai. 
The raw moments are complex in the case of the triangular, and 

we restrict our attention to the case where a = 0. Writing c as a 
fraction z of b, the approximate kth raw moment is then

ˆ
( )( )

m



k

k
i
A

i

k

i

N

i
A

i

b
p z

p z

c

=
( )

+ − − −(
−

=

−

∑ 1

1

11 1 1 ))
















=∑
k

i N

N

c

.  . . . . . . . . . . .           (A-21)

The true kth raw moment is 
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The variance of the kth raw moment is
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Thus, we have 
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and we see that d is independent of b and that the S-equivalences 
that we list in Table 7 hold for any T(0, b, b/2).

Log-Normal S-Equivalence. The inverse CDF for the log-normal 
is F i i

− −= +1 1( ) [ ( )] m  exp  . The approximate kth raw moment 
for approximation A is then
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The true kth raw moment of the log-normal is 
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The variance of the kth raw moment is
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Thus, we have
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and we see that d is independent of m and that the S-equivalences 
that we list in Table 7 hold for any L(m, 1).
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