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Abstract In this paper, we develop a practical and flexible methodology for gen-
erating a random collection of discrete joint probability distributions, subject to a
specified information set, which can be expressed as a set of linear constraints (e.g.,
marginal assessments, moments, or pairwise correlations). Our approach begins with
the construction of a polytope using this set of linear constraints. This polytope
defines the set of all joint distributions that match the given information; we refer to
this set as the “truth set.” We then implement a Monte Carlo procedure, the Hit-and-
Run algorithm, to sample points uniformly from the truth set. Each sampled point
is a joint distribution that matches the specified information. We provide guidelines
to determine the quality of this sampled collection. The sampled points can be used
to solve optimization models and to simulate systems under different uncertainty
scenarios.
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1 Introduction

Many decisions amenable to quantitative methods include significant uncertainty. In
these cases, we often assume the underlying probability distribution is known. How-
ever, in many situations we have only partial information with which to constrain

L. V. Montiel · J. E. Bickel (B)
Graduate Program in Operations Research/Industrial Engineering,
The University of Texas at Austin, 1 University Station C2200,
Austin, TX 78712, USA
e-mail: ebickel@mail.utexas.edu

L. V. Montiel
e-mail: lvmontiel@gmail.com, lvm92@mail.utexas.edu



Methodol Comput Appl Probab

this distribution. For example, we may know only the marginal distributions and
some pairwise correlation coefficients. In these cases, the probability distribution is
not unique, but rather is a member of a set of distributions with known properties.
This uncertainty about the underlying distribution poses a significant challenge
and solutions fall into two categories. First, robust optimization methods, seek a
solution that is in some sense good over a wide range of possible scenarios (Ben-Tal
and Nemirovski 2002). Second, approximation methods have been proposed, which
produce a single joint distribution given partial information. The most popular of
these approaches is maximum entropy (Jaynes 1957, 1968).

In this paper, we present a simulation procedure to create not one, but a collection
of joint distributions uniformly sampled from a finite dimensional set consistent with
the given information. Specifically, our procedure generates a collection of finite-
dimensional, discrete, joint probability distributions whose marginals have finite
support. This procedure can be used in conjunction with or as an alternative to the
approximation and robust optimization methods discussed above.

As an example, consider a random vector X = {X1, X2, . . . , Xn}, with specified
marginal distributions Fi(Xi) and correlation matrix �X . There are an infinite
number of joint distributions G(X) that match these constraints. We refer to this
set of distributions as the “truth set” (T). By “truth” we mean that any distribution
within this set is consistent with the stated constraints and therefore could be the true
joint distribution. Our goal is to generate a collection of joint distributions Gi(X), i =
1 to N, that are consistent with the given information, where N is the number of
samples in our collection. As we detail below, we use the Hit-and-Run (HR) sampler
to produce a collection of samples uniformly distributed in T (Smith 1984).

It is important to emphasize that the method we suggest here is fundamentally
different from other methods of random variate generation such as NORTA (Ghosh
and Henderson 2003) and chessboard techniques (Mackenzie 1994; Ghosh and
Henderson 2001). These methods produce instantiations x of X based on a single
distribution G(X) that is consistent with a set of specified marginal distributions,
correlation matrix, and in the case of NORTA, the assumption that the underlying
dependence structure can be modeled with a normal copula. Thus, NORTA and
the chessboard techniques produces random variates based on a single distribution
contained within T.

As the reader will see, in our discrete setting, we envision the sample space of
X as being fixed and therefore seek to create a set of discrete probabilities that
are consistent with the given information. Before proceeding, we should explain
this focus on generating probabilities G(X) rather than outcomes of X. Within the
decision analysis community, for example, the problem of specifying a probability
distribution given partial information is well known (Jaynes 1968) and of great
practical importance (Abbas 2006; Bickel and Smith 2006). For example, suppose
one knows that the average number rolled on a six-sided die is 4.5. What probability
should one assign to each of the six faces? As discussed above, one possible approach
is the application of maximum entropy (Jaynes 1957, 1968). Maximum entropy would
specify the (unique) probability mass function (pmf) that is closest to uniform,
while having a mean of 4.5. The procedure described in this paper was originally
developed to test the accuracy of maximum entropy and other approximations.
Hence, it explores a larger number of probability distributions uniformly sampled
from T .
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2 Literature Review

HR is an effective method to sample the interior of a polytope and is easy to
implement. However, it is not the only possible sampling procedure. In the following,
we present a brief review of alternative methods and discuss their shortcomings.

The first set of sampling procedures are acceptance-rejection methods (von
Newmann 1963). These methods embed the region of interest S within a region D for
which a uniform sampling algorithm is known. For example, one might embed S
within the union of non-overlapping hyperrectangles or hyperspheres (Rubin 1984)
and then uniformly sample from D, rejecting points that are not also in S. As pointed
by Smith (1984), this method suffers from two significant problems as far as our work
is concerned. First, embedding the region of interest within a suitable superset may
be very difficult (Rubin 1984). Second, as the dimension of S increases, the number of
rejections per accepted sample (i.e., the rejection rate) grows exponentially. For ex-
ample, Smith (1984) shows that when S is a 100-dimensional hypercube and D is a cir-
cumscribed hypersphere, 1030 samples are required on average for every sample that
is accepted. The polytopes that we consider are at least this large and more complex.

The second alternative, described by Devroye (1986), consists of generating
random points within the polytope by taking random convex combinations of the
polytope’s vertices. This method is clearly infeasible for most problems of practical
interest, since it requires specifying all of the polytope’s vertices in advance. For high-
dimensional polytopes this is very difficult, if not impossible, on a reasonable time
scale. For example, consider a simple joint probability distribution comprised of eight
binary random variables, whose marginal distributions are known. The polytope
encoding these constraints could have up to 1013 vertices (McMullen 1970). While
this is an upper bound, the number of vertices one is likely to encounter in real
problems is still enormous (Schmidt and Mattheiss 1977).

The final alternate method is based on decomposition, in which the area of interest
is divided into non-overlapping segments for which uniform sampling is easy to
perform. Again, this method requires full knowledge of all the extreme points of T.
Rubin (1984) provides a brief review of such methods and notes that they entail “sig-
nificant computational overhead” and are practical only for low-dimensional polytopes.

HR is a random walk through the region of interest. As such, it avoids the
problems detailed above since every sampled point is feasible and it does not require
knowledge of the polytope’s vertices. The drawback of this method is that the
samples are only asymptotically uniformly distributed and it can take a large number
of samples before the sample set is acceptably close to uniform (Rubin 1984; Smith
1984). We deal with this issue below.

This paper is organized as follows. Section 3 presents a motivational example to
build the reader’s intuition regarding the method we describe. Section 4 describes the
general procedure for generating collection of joint distributions. Section 5 presents
an illustrative example of the sampling procedure. Finally, in Section 6 we conclude
and discuss future research.

3 Motivational Example

To illustrate and motivate our technique, suppose we are deciding whether or not to
market a new product. At present, we are uncertain about our production costs and
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Fig. 1 Two binary variables with unknown information

whether or not a competitor will enter the market. Let V1 represent the uncertainty
regarding whether the competitor will enter the market (V1 = 1) or not (V1 = 0),
and let V2 represent our production costs being high (V2 = 1) or low (V2 = 0).
Graphically, we can represent these scenarios using the binary probability tree in
Fig. 1a.

We start by assuming we have no knowledge of the marginal distributions of V1

and V2 nor their dependence structure. In this case, T consists of all joint distributions
of (V1, V2) with four outcomes n = 4 and probabilities p = (p1, p2, p3, p4). We can
simplify the joint distributions using only three probabilities (p1, p2, p3) since p4 =
1 − p1 − p2 − p3. The truth set, shown in Fig. 1b is a polytope in three dimensions
and its vertices represent extreme joint distributions. In this case, the center of T

is the joint pmf p = (0.25, 0.25, 0.25, 0.25), which assumes the random variables are
independent and with uniform marginals. The small dots in Fig. 1b are samples
(complete pmfs) generated by the HR procedure we describe below. By measuring
the Euclidean distance (L2-Norm) from the center of T to all other joint distributions
in T (Fig. 1c), we see that most of the samples are at 0.3 units from the center. The
samples, which correspond to the distribution of volume in the truth set, are less
concentrated close to the center and the corners.

Now, suppose we have information that there is a 70% chance the competitor
will enter the market and that there is a 30% chance that production cost will be
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high (unconditioned on the entry of the competitor). The new information modifies
the probability tree (Fig. 2a) and introduces two new constraints to restrict the joint
distributions matching the marginal probabilities (Fig. 2b).

Each constraint is a hyperplane that cuts T, reducing its dimension by one. As
shown in Fig. 2c, T is now a line with extremes at (0.3, 0.4, 0.0) and (0.0, 0.7, 0.3). As
a reference, the distribution that assumes independence (i.e., the maximum entropy
approximation in this case) is located at (0.21, 0.49, 0.09) and is marked with a large
black dot. Later, we will expand this example, increasing its dimension.

4 General Procedure

4.1 Problem Statement

The objective of our procedure is to create a collection of discrete joint probability
distributions uniformly sampled from a finite dimensional, continuous, convex and
compact set that contains all possible realizations of the joint distribution that are
consistent with given information. We assume the joint distributions are discrete
with finite support, as are the marginal distributions. To ensure that our truth set
is convex, we only admit information that can be encoded with linear equality
constraints. While this is certainty a limitation, we are still able to address a large
class of problems that are of practical importance (Bickel and Smith 2006).

4.2 Notation

In order to describe the sampling procedure, we first establish the notation, which we
illustrate with a simple example using a joint distribution with two variables; the first
variable having “High,” “Medium,” and “Low” outcomes, and the second variable
having “Up” and “Down” outcomes. In this case, we require one set including two
random variables V = {V1, V2}, plus two sets for the outcomes O

V1 = {H, M, L}
and O

V2 = {U, D}. Finally, we create a set including the cardinal product of all the
outcomes:

U = {[H, U], [H, D], [M, U], [M, D], [L, U], [L, D]}.
Additional sets are required to include more information. For example, sets that

include joint outcomes where V1 is set to “High.” A formal definition of the notation
is presented next.

Notation:

Indices and sets:

I Set of available information.
V Set of random variables.
Vi ∈ V Random variable i in V.
O

Vi Set of possible outcomes for random
variable Vi.

ω
Vi

r ∈ O
Vi Realizations for random variable Vi

indexed by r = 1, 2 . . . |OVi |.
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U Set of all joint outcomes,
U = O

V1 × O
V2 × · · · × O

V|V| .
ωk ∈ U Joint outcomes ωk = {ωV1

r , ω
V2

s , . . . , ω
V|V|
z }

indexed by k = 1, 2, . . .
∏

Vi
|OVi |.

U
ω

Vi
r

Set of joint outcomes for which random

variable Vi obtains the value ω
Vi

r .
U

ω
Vi
r ω

V j
s

Set of joint outcomes for which random

variables Vi and V j obtain values ω
Vi

r and ω
V j

s .

Data:

q
ω

Vi
r

Probability that Vi = ω
Vi

r .

q
ω

Vi
r ω

V j
s

Probability that Vi = ω
Vi

r and V j = ω
V j

s .

ρVi ,V j
Moment correlation between Vi and V j.

ρr
Vi ,V j

Rank correlation between Vi and V j.
σVi ,V j

Covariance between Vi and V j.
mz

Vi
The zth moment of random variable Vi.

Decision variables:

p Vector of decision variables defining
the joint probability mass function.

pωk ∈ p Decision variables describing the
probability of the joint event ωk.

Table 1 applies the set notation to our example. The variables are V1 and V2 and
their respective marginal outcomes are O

V1 = {H, M, L} and O
V2 = {U, D}. ω

V1

1 =
H is the first possible realization of V1. The joint outcomes ωk ∈ U are defined as
ω1 = [H, U], ω2 = [H, D], ω3 = [M, U], . . . , ω6 = [L, D]. The probabilities of these
outcomes are pω1 = P(V1 = H, V2 = U), pω2 = P(V1 = H, V2 = D), pω3 = P(V1 =
M, V2 = U), . . . , pω6 = P(V1 = L, V2 = D).

We use dot-notation to marginalize the random variables. For example, U
ω

V1
1

=
UH· and U

ω
V2
2

= U·D, where “·” implies marginalization over that random variable.
Using the same index k for ωk, we have U·D = {ω2, ω4, ω6}.

The set of available information, denoted as I ≡ {q
ω

Vi
r

, q
ω

Vi
r ω

V j
s

, ρVi ,V j
, σVi ,V j

, mz
Vi
},

includes all the information to be included in the model. q
ω

Vi
r

≡ P(Vi = ω
Vi

r ) is

Table 1 Notation example
V = {V1, V2}, O

V1 = {H, M, L}, O
V2 = {U, D},

U·· = {[H, U], [H, D], [M, U], [M, D], [L, U], [L, D]},
UH· = {[H, U], [H, D]}, U·U = {[H, U], [M, U], [L, U]},
UM· = {[M, U], [M, D]}, U·D = {[H, D], [M, D], [L, D]},
UL· = {[L, U], [L, D]},
UHU = {[H, U]}, UHD = {[H, D]}, UMU = {[M, U]},
UMD = {[M, D]}, ULU = {[L, U]}, ULD = {[L, D]}.
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the marginal distribution for variable Vi, and q
ω

Vi
r ω

V j
s

≡ P(Vi = ω
Vi

r , V j = ω
V j

s ) is

the pairwise joint distribution for variables Vi, V j. When marginal information is
available, it is possible to describe the moment correlation ρVi ,V j

, the rank correlation
ρr

Vi ,V j
and the covariance σVi ,V j

for the variables Vi and V j. Additionally, if the
marginals are unknown, we can make use of known moments mz

Vi
to constrain the

truth set. Our notation can be extended to more than two variables and to match
three-way or four-way probabilities.

4.3 Constraints

We are now in position to constrain the truth set to match the information provided
by I. In this section, we present different families of equations that can be used to
constrain T, creating a system of m linear equations Ap = b and n non-negativity
constraints p ≥ 0, where p = {pω1 , pω2 , . . . , pω|U| }. A ∈ R

m×n defines the properties
we want to constrain and b ∈ R

m represents the available information.

4.3.1 Matching Necessary Conditions

In all cases, the joint pmf must sum to one and each probability must be non-negative.
We represent these constraints with Eqs. 1a and 1b.

∑

ωk∈U

pωk = 1, (1a)

pωk ≥ 0, ∀ωk ∈ U. (1b)

Equations 1a and 1b give the necessary and sufficient conditions for p to be a pmf and
are required in all cases. Notice that Eq. 1a reduces the dimension of the polytope
T from n to n − 1 and Eq. 1b limits T to positive quadrants. This constraint alone
assures that T is a compact set.

4.3.2 Matching Marginal and Pairwise Probabilities

A second set of equations is used when we have information regarding the marginal
and pairwise probabilities. Equation 2a requires that the joint probabilities match
the marginal assessments. While, Eq. 2b requires that they match pairwise joint
assessments.

∑

ωk∈U
ω

Vi
r

pωk = q
ω

Vi
r

∀ Vi ∈ V, ω
Vi

r ∈ O
Vi
, (2a)

∑

ωk∈U
ω

Vi
r ω

V j
s

pωk = q
ω

Vi
r ω

V j
s

∀ Vi, V j ∈ V, (ω
Vi

r , ω
V j

s ) ∈ O
Vi × O

V j
. (2b)

Equations 2a and 2b can be extended to cover three-way, four-way, or higher-order
joint probability information.
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4.3.3 Matching Moments

If the outcomes can be represented as numerical values, instead of categorical data,
we can match moment information using Eq. 3.

∑

ω
Vi
r ∈O

Vi

(ω
Vi

r )
z ·

∑

ωk∈U
ω

Vi
r

pωk = mz
Vi

∀ Vi ∈ V. (3)

Equation 3 matches the zth moment of variable Vi. For z = 1 we can match the
expected value of Vi and for z = 2 we can match the second raw moment. We note
that z = 0 is simply a restatement of Eq. 1a and the requirement that the probabilities
sum to one. Recall the outcomes ω

Vi

r are known, so the constraint is linear in the joint
probabilities pωk .

4.3.4 Matching Covariance and Correlation

If the first moments for variables Vi and V j are known, it is possible to restrict the
joint distribution to match a given covariance σVi ,V j

. Moreover, we can match the
correlation if the variances for Vi and V j are also known. Equations 4a and 4b match
the covariance and moment correlation respectively.

∑

ω
Vi
r ∈O

Vi

∑

ω
V j
s ∈O

V j

ω
Vi

r · ω
V j

s

∑

ωk∈U
ω

Vi
r ω

V j
s

pωk =σVi ,V j
+ m1

Vi
· m1

V j
∀ Vi, V j ∈ V, (4a)

∑

ω
Vi
r ∈O

Vi

∑

ω
V j
s ∈O

V j

ω
Vi

r · ω
V j

s

∑

ωk∈U
ω

Vi
r ω

V j
s

pωk =ρVi ,V j
·
√

σ 2
Vi

· σ 2
V j

∀ Vi, V j ∈ V. (4b)

where σ 2
Vi

is the variance of variable Vi, and ρVi ,V j
is the moment correlation of

variables Vi and V j.

4.3.5 Matching Spearman’s Correlation Coef f icient

Another measure of variation that requires less information, and can be used with
numerical as well as categorical information, is the rank correlation. The rank
correlation is defined as

ρr
Vi ,V j

=
Cov

(
P

(
Vi ≤ ω

Vi

r

)
, P

(
V j ≤ ω

V j

s

))

√

Var
(
P

(
Vi ≤ ω

Vi
r

)) · Var
(

P
(

V j ≤ ω
V j

s

)) . (5)

Unlike the Pearson product-moment correlation, rank correlation is invariant with
respect to the marginal outcomes. This and other characteristics make it a reliable
measure of association (for more on rank correlation and assessment methods see
Clemen and Reilly 1999 and Clemen et al. 2000). Rank correlation only requires
information regarding the marginal probabilities for Vi and V j and can be described
as a linear function as follows.

Let H : R
2 → R be a two-place real function, and let B = [x1, x2] × [

y1, y2
]

be a
rectangle whose vertices are in the domain of H. According to Nelsen (2005), the
H-volume is defined as

VH [B] = H(x2, y2) − H(x2, y1) − H(x1, y2) + H(x1, y1). (6)
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Let ω+
k (Vi) be the outcome ωVi

r of variable Vi at the joint outcome ωk and let
ω−

k (Vi) be the outcome ω
Vi
r−1 of Vi. Notice that ω

Vi

r−1 is the outcome that precedes ω
Vi

r
in the marginal distribution of Vi. The cumulative probabilities that Vi is less than the
outcomes ω+

k (Vi) and ω−
k (Vi) are p+

k (Vi) = P(Vi ≤ ω+
k (Vi)) and p−

k (Vi) = P(Vi ≤
ω−

k (Vi)), respectively. These cumulative probabilities define the interval Iωk(Vi) as
follows

Iωk(Vi) ≡ [
p+

k (Vi), p−
k (Vi)

]
. (7)

Using the intervals Iωk(Vi) and Iωk(V j), we can define a rectangular area Iωk(Vi) ×
Iωk(V j) equivalent to B. Then, using the H-volume we can define the rank correlation
between Vi and V j as

∑

ωk∈U

pωk

Vx2∗y2

[
Iωk(Vi) × Iωk(V j)

]

qω+
k (Vi)

· qω+
k (V j)

=
ρr

Vi ,V j
+ 3

3
, (8)

where qω+
k (Vi)

= P(Vi = ω+
k (Vi)), which is the marginal probability of variable Vi

having the outcome ωVi
r at the joint outcome ωk. Additionally, the H-volume VH

is as defined for H = x2 · y2, where x ∈ Iωk(Vi) and y ∈ Iωk(V j).
It is important to recall that, the rank correlation ρr is bounded by a scalar such

that |am̂| < 1, where m̂ is the maximum number of possible outcomes of variables
Vi and V j. The bounds were proven by Mackenzie (1994) for uniform discrete
distributions. Mackenzie (1994) also proves that limm̂→∞ |am̂| = 1, meaning that
using more outcomes in each marginal distribution provides a more refined rank
correlation bounded by [−1, 1].

4.4 Sampling Procedure

After characterizing the truth set T, the next step uses the HR sampler (Smith 1984)
to uniformly sample distributions from T. The HR procedure is the fastest known
algorithm to sample the interior of an arbitrary polytope. The algorithm has been
proven to mix in O(h3) time, where h = (n − m) is the dimension of the polytope.
Although the mixing time is polynomial, as discussed above, the number of samples
required to guarantee convergence to the uniform distribution can be large (Lovasz
1998). To overcome this problem, in the following sections we propose a practical
definition for convergence that reduces the number of samples required to create a
discrete representation of the truth set.

4.4.1 Hit-and-Run Sampler

The algorithm is described below and illustrated in two dimensions in Fig. 3.

Step 1: Set i = 0 and select an arbitrary point xi ∈ T.
Step 2: Generate a set D ⊆ R

n of directions.
Step 3: Choose a random direction di uniformly distributed over D.
Step 4: Find the line set L = T ∩ {x|x = xi + λdi, λ a real scalar}.
Step 5: Generate a random point uniformly distributed over xi+1 ∈ L.
Step 6: If i = N, stop. Otherwise, set i = i + 1 and return to Step 2.
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Step 1: xi        . Step 2: Generate set D. Step 3: Choose di    D.

Step 4: Use di to set L. Step 5: Select xi+1    L. Step 6: Return to Step 2.

Fig. 3 Hit and run sampler. Illustration of the algorithm in 2d

The HR was designed for full-dimensional polytopes, however, with minor
modifications it can be adapted to sample efficiently from non-full-dimensional sets.
These modifications are presented in the following section.

4.4.2 Sampling Non-full-dimensional Polytopes

As we noted in Section 4.3, the characterization of T describes the polytope as a
system of m linear equations and n non-negative variables: Ap = b, p ≥ 0. The HR
sampler is designed to sample points in full-dimensional polytopes. However, the
polytope T is not full-dimensional since h = n − m < n. To overcome this problem,
we find the projection of p̄ ∈ R

n into the hyperplane Ap = b using Eq. 9, where I
represents the identity matrix.

p = (I − AT(AAT)−1A)p̄ + AT(AAT)−1b (9)

Then, we can create an hypersphere D ∈ R
n in the full-dimensional space by

sampling independent vectors of size n from the multivariate standard normal and
normalizing them so that each vector has equal magnitude. Using Eq. 9, we can
project the direction set D into T. With the proper scaling, the final result is a set
of directions D ∈ T from which we can select directions uniformly distributed. The
line L is created by extending the directions ±di ∈ D until p ≥ 0 is violated. The rest
of the implementation is straightforward.

This step removes the non full dimensional problem by reducing the dimension
from n to n − m for all the steps that require it. It is now possible to treat T as a
full-dimensional polytope in n − m dimensions.

4.5 Stopping Time

HR guarantees that the sampled collection eventually converges to the uniform dis-
tribution over T (Smith 1984). However, as pointed by Rubin (1984), the theoretical
number of required samples to reach this convergence can be large. Yet, as we show
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in this section, the number of samples required to achieve reasonable performance
in practical applications in generally much smaller.

Measuring the rate of convergence to the uniform distribution, even in low-
dimensional polytopes, is very difficult. Uniformity would imply that any possible
partition of T contains a fraction of samples that is proportional to that partition’s
volume divided by the volume of the polytope. Computing the volume of arbitrary
polytopes is a difficult task (Bárány and Füredi 1987). In fact, in many cases, the
volume of the polytope can only be approximated by a random walk through
the polytope (Dyer et al. 1991; Kannan et al. 1996), a procedure similar to HR.
Therefore, we propose a measure of convergence that does not directly rely on global
properties of the polytope and is easy to compute.

We begin by noting that for pi, a random vector sampled from T using
HR, there exists unique vectors μ = {μ1, . . . , μn} and σ 2 = {σ 2

1 , . . . , σ 2
n } such that

limN→∞
∑N

i=1
pi

N = μ and limN→∞
∑N

i=1
(pi−μ)2

N−1 = σ 2, where all calculations over pi

are performed element-wise. Recall that since pi has bounded support and the
HR assures convergence in distribution, all the moments must converge (Casella
and Berger 2002, p. 65). As discussed below, we measure convergence of HR by
measuring the convergence of the sample mean and variance. These moments are of
particular interest due to their intuitive interpretation. The sample mean describes
how close the center of the collection is to the center of T. The variance describes
how the dispersion of the samples matches the dispersion of the T’s volume. Hence,
we now propose the following definitions for what we term “fair-convergence”.

Definition 1 A collection of joint distributions of size N is called fair-in-mean, if the
average vectors of the joint distributions in a collection for the first N

2 and N samples
of the HR algorithm are within an ε-ball of diameter α.

Definition 2 A collection of joint distributions of size N is called fair-in-dispersion,
if the standard deviation vectors of the joint distributions in a collection for the first
N
2 and N samples of the HR algorithm are within an ε-ball of diameter β.

Definition 3 A collection of joint distributions of size N is called fair, if it is fair-in-
mean and fair-in-dispersion for selected small parameters α, β > 0.

We implemented these definitions using Eqs. 10 and 11, where pi is the ith
sampled discrete probability distribution with n joint elements. To make notation
easier we use pi and assume all calculations are performed element-wise except for
|| · ||2. Equation 10 computes the average of the collection sampled after N iterations
(
∑N

i=1
pi

N ) and compares it to the average after N
2 iterations. If after N iterations the

vector of averages is within an ε-ball if diameter α of the previous vector (for some
small α > 0), we assume the sample is fair-in-mean.

Equation 11 is the equivalent version for the variance, where

(∑N

j=1
pi − p j

)2

=
(

Npi −
∑N

j=1
p j

)2

= N2

(

pi −
∑N

j=1 p j

N

)2

= N2(pi − μ)2,

and where μ is the vector of averages for each joint element of the sample. In a
similar way, if after N iterations the new vector of variances is within a ε-Ball of
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diameter β of the previous vector (for some small β > 0), we assume the sample is
fair-in-dispersion.

∣
∣
∣
∣

∣
∣
∣
∣

N∑

i=1

pi

N
−

N
2∑

i=1

2 · pi

N

∣
∣
∣
∣

∣
∣
∣
∣
2

≤ α (10)

∣
∣
∣
∣

∣
∣
∣
∣

N∑

i=1

(∑N
j=1 pi − p j

)2

N − 1
−

N
2∑

i=1

4 ·
(∑ N

2
j=1 pi − p j

)2

( N
2 − 1

)

∣
∣
∣
∣

∣
∣
∣
∣
2

≤ β · N2 (11)

The implementation of this stopping time for the mean can be performed by
keeping track of

∑N
i=1 pi at each iteration and dividing it by the number of samples at

each check point. Additionally, using the recursion in Eq. 12, we can also keep track
of the variance of each joint element at each iteration.

(i − 1)σ 2
w,(i) = (i − 2)σ 2

w,(i−1) +
(

f (i)
i

· f (i)
i − 1

)

, (12a)

f (i) =
i−1∑

j=1

pj
w − (i − 1)pi

w ∀ i = 2, 3, . . . , N.

σ 2
w,(1) = 0, ∀ w ∈ {1, 2, . . . , n}. (12b)

Our experience suggests that the number of samples required for fair convergence
is considerably smaller (reductions are in the order of ≈109) than the Lovasz (1998)
theoretical lower bound. As an example, Fig. 4 provides illustrative results for fair
convergence in six unconstrained polytopes (Eq. 1 only) of different dimensions.

If T is unconstrained (h = n − 1), the truth set is symmetric and the center of
mass of T is known to be the discrete uniform distribution. Therefore, we can test
the convergence of HR by starting the algorithm at a point close to a corner and
monitor the number of samples needed for the mean to arrive within an ε-Ball of
radius α > 0 with center at the discrete uniform distribution. For these collections,
the algorithm will stop once the sample is fair-in-mean, and using Eq. 11 we check
for fair-in-dispersion. This is a strong test because we are selecting the worst possible
point to initialize the algorithm.

Fig. 4 Minimum required
number of samples (N) to
generate a fair sample vs the
number of events (n) in the
distribution for six
unconstrained polytopes. A
solid line connects the
empirical data and the dashed
line present the best fit
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In particular, we initialize the algorithm by measuring the distance from the center

to a corner of T:
√

n−1
n . We then use δ = 1−τ

n and τ = .9 to define the initial point

p0 = {1 − δ · (n − 1), δ, . . . , δ} where ||p0 − p∞||2 = τ

√
n−1

n . After the initial point is

set, we look for the smallest N such that ||∑N
i=1

pi

N − p∞||2 < α = ϕ

√
n−1

n for ϕ =
0.05. Finally, we check for convergence every K = 100 iterations. For the sample
sizes proposed the collections are also fair-in-dispersion.

5 Illustrative Example

We now demonstrate the procedure by applying it to an extension of the motivational
example introduced earlier. Recall that we are unsure if a competitor will enter
the market (V1) and about our production costs (V2). Additionally, assume we
are in negotiations to acquire another company that would allow us to add a new

Fig. 5 Possible profits of the
economic model
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Fig. 6 Euclidean distance
from each sampled point to
center

product feature, boosting sales. The acquisition will either be “successful” (V3 = s)
or “unsuccessful” (V3 = u). In addition, we are uncertain about the demand for our
product (V4), which could be “high”, “medium”, or “low”. In this case, there are
24 possible scenarios. Assume the company has estimated the profit associated with
each scenario, which is shown in Fig. 5.

We simulate 10 million joint pmfs, under an assumption of no information
regarding the likelihood of the various scenarios. For each scenario, we measure the
Euclidean distance (i.e., the L2-Norm) from the sample to the center of T, which we
take to be the mean of all sampled distributions. Figure 6 shows a scatterplot for a
portion of the simulation results, where each point is a possible true joint pmf given
the state of information.

Figure 7a presents the distribution of the L2-Norm, where the solid lines mark
the extremes in the sample. As in Section 3, we observe that the samples are less
concentrated near the center and the corners of T and more concentrated at distances
where the volume is more abundant. For each sampled joint distribution, we can
calculate the expected profits of our model. Figure 7b presents the distribution of the
expected profit when no information is available.

Now, suppose our research team has assessed the marginal probabilities for the
four random variables. Specifically, assume the probability that the competitor will
enter is 70%, the probability that production cost will be high is 30%, the probability
that the acquisition will be successful is 35%, and the probabilities for the demand
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(a) Euclidean distance pdf. (b) Expected profit pdf (in millions).

Fig. 7 Simulation results for a set with no partial information
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Fig. 8 Simulation results for a set with marginal assessments

being high, medium, and low are 50, 20 and 30%, respectively. The new results for
the distributions of the Euclidean distance (L2-Norm) and the expected profit are
shown in Fig. 8a and b, respectively. Again, the dashed lines mark the extremes of
the sample.

Figure 8a shows a slight reduction in the distance, compared to Fig. 7a, from the
center to the sampled points. This is the result of constraining the truth set with
new information regarding the marginal probabilities. Figure 8b shows a substantial
reduction in the possible range for the expected profit.

Taking our example one step further, assume now that our research team has
determined that the rank correlations between V1 (entry of the competitor) and
V2 (prodution cost), V1 and V4 (demand), and V2 and V4 are −0.2, 0.3, and 0.2,
respectively. Figure 9a and b show the results of the distributions for the Euclidean
distance and the expected profits for the three scenarios: no information (black), only
marginal assessments (grey), and marginal assessments and three rank correlations
(white).

The extremes of each case are shown with vertical solid (no information), dashed
(marginals only), and dotted lines (marginals with three pairwise correlations). We
see that additional information further constrains the truth set and reduces the range
for the possible expected profits.
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Fig. 9 Simulation results for three information scenarios



Methodol Comput Appl Probab

6 Conclusions

The general simulation procedure we have described provides a flexible and pow-
erful tool to analyze stochastic models when the joint distribution is incompletely
specified. The methodology is easy to implement, develops a collection of joint
distributions, and represents an alternative to previous approaches such as robust
optimization and approximations such as maximum entropy. We demonstrated the
procedure with a simple example based on marginal and pairwise rank correla-
tion coefficients. The methodology can be extended to higher number of random
variables, random variables with more than three possible outcomes, and higher-
order conditioning such as three-way assessments. Future research will explore
different applications of this sampling methodology and test the accuracy of existing
distribution approximations such as maximum entropy, among others.

Appendix A: Spearman’s Correlation

The derivation of Eq. 8 starts from basic principles as follows:

ρr
Vi ,V j

+ 3 = Cov(FVi , FV j)
√

Var(FVi) ∗ Var(FV j)
+ 3

= E(FVi , FV j) − 1
4

1
12

+ 3 = 12 · E(FVi , FV j) (13a)

= 12
∫ 1

0

∫ 1

0
Vi · V j · c(Vi, V j) dVi dV j

= 12
∑

ωk∈U

cωk(Vi, V j) ·
∫ p+

k (Vi)

p−
k (Vi)

∫ p+
k (V j)

p−
k (V j)

Vi · V j dVi dV j (13b)

= 3
∑

ωk∈U

cωk(Vi, V j)
[ [

p+
k (Vi)p+

k (V j)
]2 − [

p+
k (Vi)p−

k (V j)
]2

− [
p−

k (Vi)p+
k (V j)

]2 + [
p−

k (Vi)p−
k (V j)

]2
]

(13c)

= 3
∑

ωk∈U

cωk(Vi, V j)Vx2∗y2

[
Iωk(Vi) × Iωk(V j)

]

= 3
∑

ωk∈U

pωk

Vx2∗y2

[
Iωk(Vi) × Iωk(V j)

]

qω+
k (Vi)

· qω+
k (V j)

. (13d)

In Eq. 13a Transitions are given by FVi ∼ U[0, 1], for which mean and variance are
well known.

In Eq. 13b We expand the expectation, partition the integrals in rectangles, and
sets cωk(Vi, V j) as constant inside each rectangle (Mackenzie 1994).

In Eq. 13c We solve the integrals and evaluate each rectangle area.
In Eq. 13d We use the definition for H-Volume and take cωk(Vi, V j) as in Eq. 14.
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For each rectangle area in B, the probability pωk is the volume of a body with base
area qω+

k (Vi)
· qω+

k (V j)
and height cωk(Vi, V j). Hence, we have:

cωk(Vi, V j) = pωk

qω+
k (Vi)

· qω+
k (V j)

. (14)
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