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ABSTRACT

In this paper, the authors verify probability of precipitation (PoP) forecasts provided by the National

Weather Service (NWS), The Weather Channel (TWC), and CustomWeather (CW). The n-day-ahead

forecasts, where n ranges from 1 to 3 for the NWS, from 1 to 9 for TWC, and from 1 to 14 for CW, are analyzed.

The dataset includes almost 13 million PoP forecasts, or about 500 000 PoPs per provider per day of lead time.

Data were collected over a 2-yr period (1 November 2008–31 October 2010) at 734 observation stations across

the contiguous United States. In addition to verifying these PoP forecasts in an absolute sense, relative

comparisons are made between the providers. It is found that, in most cases, TWC does not add skill to NWS

forecasts. Perhaps most interestingly, it is also found that CW does have the ability to forecast PoPs at

a resolution of 0.01.

1. Introduction

Bickel and Kim (2008, hereafter BK08) analyzed ap-

proximately 169 000 probability of precipitation (PoP)

forecasts provided by The Weather Channel (TWC)

over a 14-month period, spanning 2004–06 at 42 U.S.

locations. They found that TWC’s near-term forecasts

(less than a 3-day lead time) were relatively well cali-

brated, while longer-term forecasts were less reliable.

This performance was driven by TWC’s forecasting

policies and tools. For example, it was found that TWC

artificially avoids PoPs of 0.5.

In this paper, we use a much larger dataset than BK08

to analyze and compare the reliability of PoP forecasts

provided by the National Weather Service (NWS),

CustomWeather (CW), and TWC. Specifically, we an-

alyze almost 13 million PoPs covering a 24-month period

(1 November 2008–31 October 2010) at 734 stations

across the contiguous United States. Our analysis con-

firms the results of BK08 and extends their analysis in

four important respects. First, as mentioned, we use

a much larger dataset, both in terms of geographic lo-

cations and observations per location. Second, we pro-

vide verification results for two additional providers

of PoP forecasts, including the NWS. Third, we analyze

whether third-party forecasts are more skilled than

those of the NWS. Finally, we segment our results by

the National Oceanic and Atmospheric Administration

(NOAA) climate regions.

TWC is the leading provider of weather information to

the general public via its cable television network and in-

teractive Web site (see online at http://www.weather.com/).

TWC’s cable network is available in 97% of cable-TV

homes in the United States and reaches more than

99 million households. The Internet site, providing

weather forecasts for 100 000 locations worldwide,

averages over 41 million unique users per month and

is the most popular source of online weather, news and

information, according to Nielsen/NetRatings (more in-

formation available online at http://press.weather.com/

company.asp).
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CustomWeather, Inc., is a San Francisco–based pro-

vider of syndicated weather content. They generate lo-

cal weather forecasts for over 200 countries worldwide,

establishing it as the industry leader for global location-

based coverage at both the U.S. and international levels.

CustomWeather provides sophisticated weather prod-

ucts to leading companies in a variety of industries in-

cluding media, energy, travel, wireless, and the Web.

This paper is organized as follows. In the next section,

we describe our verification approach and review the

associated literature. In section 3 we summarize our data

collection procedure. In section 4 we present the re-

liability results and discuss the implications of this study.

Finally, in section 5 we present our conclusions.

2. Verification of probability forecasts

The forecast verification literature is extensive. See

Katz and Murphy (1997) and Jolliffe and Stephenson

(2003) for excellent overviews. In this paper, we adopt

the distribution-oriented framework proposed by Murphy

and Winkler (1987, 1992). This framework was described

in BK08, but is repeated here for convenience.

a. Distributional measures

Let F be the finite set of possible PoP forecasts and let

f 2 [0, 1] be a particular forecasted value. In practice,

forecasts are given in discrete intervals, 0.1 being com-

mon and used by the NWS and TWC. On the other

hand, CW provides PoP forecasts at 0.01 intervals.

Here X is the set of possible precipitation observa-

tions, while x denotes a particular observation. We as-

sume that x may obtain only the value 1 in the event of

precipitation and 0, otherwise.

Both F and X are random variables and their empir-

ical frequency distribution, given a particular lead time l,

is denoted p( f, xjl). To simplify the exposition we will

state lead time in days, rather than hours. This distri-

bution completely describes the performance of the

forecasting system. For example, a perfect forecasting

system would ensure that p( f, xjl) 5 0, when f 6¼ x.

Lead times for TWC may obtain integer values ranging

from 1 (1-day ahead) to 9 (the last day in a 10-day fore-

cast). BK08 also analyzed TWC’s same-day forecast, but

we do not consider these forecasts in this paper. In the

case of the NWS, we analyze lead times from 1 to 3 days.

CustomWeather provides PoPs from 1 to 14 days ahead.

Since

p( f , xjl) 5 p( f jl)p(xj f , l) 5 p(xjl)p( f jx, l), (1)

two different factorizations of p( f, xjl) are possible and

each facilitates the analysis of forecasting performance.

The first factorization, p( f, xjl) 5 p( f jl)p(xj f, l), is

known as the calibration-refinement (CR) factorization.

Its first term p( f jl) is the marginal or predictive distri-

bution of forecasts. The second term p(xj f, l) is the

conditional distribution of the observation given the

forecast. For example, p(x 5 1j f, l) is the relative fre-

quency of precipitation when the forecast was f and is

equal to the conditional mean mXjF,l 5 EX[XjF 5 f, l],

where EX denotes the expectation taken with respect to

X. The forecasts and observations are independent if

and only if p(xj f, l) 5 p(xjl). A set of forecasts is well

calibrated or reliable if p(x 5 1j f) 5 f for all f. A set of

forecasts is perfectly refined (or sharp) if p( f) 5 0 when

f is not equal to 0 or 1, that is, the forecasts are categorical.

Forecasting the climatological average or base rate will

be well calibrated, but not sharp. Likewise, perfectly sharp

forecasts will generally not be well calibrated.

The second factorization, p( f, xjl) 5 p(xjl)p( f jx, l), is

the likelihood-base rate (LBR) factorization. Its first term

p(xjl) is the climatological precipitation frequency. Its

second term p(f jx, l) is the likelihood function. For ex-

ample, p( f jx 5 1, l) is the relative frequency of forecasts

when precipitation occurred, and p(f jx 5 0, l) is the

forecast frequency when precipitation did not occur. The

likelihood functions should be quite different in a good

forecasting system. If the forecasts and observations are

independent, then p(f jx, l) 5 p(f jl).
b. Summary measures

In addition to the distributional comparison discussed

above, we will use several summary measures of forecast

performance. The mean forecast given a particular lead

time is

mFjl 5 EFjl[F] 5 �
F

fp( f jl).

Likewise, the sample climatological frequency of pre-

cipitation, indexed by lead time, is

mXjl 5 EXjl[X] 5 �
X

xp(xjl).

The mean error (ME) is

ME(F, Xjl) 5 mFjl 2 mXjl (2)

and is a measure of unconditional forecast bias. The mean

squared error (MSE) or the Brier score (Brier 1950) is

MSE(F, Xjl) 5 EF ,Xjl[(F 2X)2].

The MSE can be factored as follows (Murphy and

Winkler 1992):
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MSE(F, Xjl) 5 s2
Xjl 1 EFjl[(mXjF ,l 2F)2]

2 EFjl[(mXjF ,l 2mXjl)
2]. (3)

The first term is the variance of the observations and is

a measure of forecast difficulty. Since X is binary,

s2
Xjl 5 p(x 5 1jl)p(x 5 0jl). The second term is an overall

measure of forecast reliability or conditional basis

(conditional on the forecast). The last term is the reso-

lution (Murphy and Daan 1985) and measures the de-

gree to which the conditional forecasts deviate from the

unconditional frequency of precipitation. Reliability

and resolution are under the control of the forecaster,

while the variance of the observations is not.

The climatological skill score (SS) is

SS(F, Xjl) 5 12MSE(F, Xjl)/MSE(mXjl, Xjl). (4)

Since

MSE(mXjl, Xjl) 5 EF ,Xjl[(mXjl 2X)2] 5 s2
Xjl,

the SS can be written as

SS(F, Xjl) 5
s2

Xjl 2 MSE(F, Xjl)
s2

Xjl
, (5)

and we see that SS measures the proportional amount by

which the forecast reduces our uncertainty regarding

precipitation, as measured by variance. The SS may also

be written as the sum of resolution and reliability (pos-

itively oriented), normalized for forecast difficulty (Toth

et al. 2003). Specifically, substituting Eq. (3) into Eq. (5)

we have

SS(F, Xjl) 5 SSRes 1 SSRel

5
EFjl[(mXjF ,l 2 mXjl)

2]

s2
Xjl

1 2
EFjl[(mXjF ,l 2 F)2]

s2
Xjl

( )
. (6)

Thus, SS will be positive when the reward for resolution

exceeds the penalty for miscalibration. If the forecasts

are perfectly reliable, perhaps after transformation, then

mXjF 5 f and mX 5 mF and

SS(F, Xjl) 5
EFjl[(F 2mFjl)

2]

s2
Xjl

5
s2

Fjl

s2
Xjl

. (7)

Thus, in the case of perfectly calibrated forecasts, the

SS is the ratio of the variance of the forecasts to the

variance of the observations. The variance of the fore-

casts is a measure of forecast sharpness.

It is important to note that ranking providers using

MSE instead of SS may not yield the same results if

their forecast windows differ. For example, as will be

explained below, CW provides a 24-h (24 h) PoP, while

both the NWS and TWC provide 12-h PoPs. In the

dataset we consider, the variance of observations for a

24-h window is larger than the variance of observations

for a 12-h window. Thus, CW’s forecasting task is more

difficult and they will have higher a MSE even if they are

just as skilled as the other providers. To correct for

this, SS normalizes by the variance of the observations,

which, again, is a measure of forecast difficulty.

3. Data-gathering procedure

We gathered forecasts and observations for nine NOAA

climate regions, shown in Fig. 1, dividing the contiguous

United States. The regions are the following: Northwest

(NW), West (W), west north central (WNC), Southwest

(SW), east north central (ENC), South (S), central (C),

Northeast (NE), and Southeast (SE). As discussed

below, we further segregate our data into cool (October–

March) and warm (April–September) seasons. We seg-

regate our data in this way in an attempt to pool data

with similar climatological frequencies. While it is well

known that conclusions reached in aggregate may fail to

hold for specific pools (Simpson 1951; Hamill and Juras

2006), as we show below, this is not a significant issue in

our case.

Forecasts were collected from identical zip code/

International Civil Aviation Organization (ICAO) sta-

tions for all providers and match observations obtained

from the National Climatic Data Center quality-

controlled local climatic data product.

We used the same observation time frame for each

provider: 1 November 2008–31 October 2010. However,

as described in section 3b, there were times when one or

two providers posted an invalid forecast (e.g., a PoP

greater than 1). While these specific forecasts are not

included, we do not exclude the forecasts of all providers

when one or two providers are not included. As we

showed earlier (Bickel et al. 2010), this issue only affects

about 3% of the data and does not alter our conclusions.

a. PoP forecasts

PoP forecasts were collected from the public

Web sites of each provider at 1800 EST each day.

[CustomWeather’s 15-day forecasts were collected online

at http://www.myforecast.com. TWC’s 10-day forecasts

were collected online at http://www.weather.com/. (TWC

does not forecast out 15 days). Finally, NWS’s PoP
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forecasts were collected from the forecast-at-a-glance

section at http://www.weather.gov/.1] The forecast-at-a-

glance provides forecasts 4 days beyond the current-day

forecast. Because of the time of collection (late after-

noon) the first day collected was the ‘‘next day’’ forecast.

From correspondence with each provider, we de-

termined the valid timing of each PoP forecast. For CW,

the PoP forecasts are 24-h forecasts and are valid for the

entire 24-h local day. For TWC, the PoP forecasts are

valid during 0700–1900 local time. For the NWS, the

day-part PoP forecasts on the forecast-at-a-glance sec-

tion, which we use here, are valid during 1200–2400

UTC. This corresponds, for example, to 0700–1900 EST,

0800–2000 EDT, and 0400–1600 PST. Therefore, lead

times and forecast–observation windows are not per-

fectly matched among providers or regions and differ in

two ways. First, the NWS and TWC 12-h observation

windows differ for regions that contain observations that

are not in the eastern time zone. As one moves west one

time zone, the NWS observation (and forecast) window

moves 1 h earlier, while the TWC observation window

remains fixed at 0700–1900 LT. This difference is greatest

in the west. The primary implication of this difference is

that the difficulty of TWC and NWS forecasting tasks

may not be identical. The difficulty of forecasting

FIG. 1. NOAA climate regions used in the analysis. (Source: http://www.ncdc.noaa.gov/

temp-and-precip/us-climate-regions.php.)

1 The forecast-at-a-glance appears on local forecast pages re-

turned from entering a city, state, or zip code in the search box on

the top-left side of the front page.
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precipitation during 0400–1600 LT may not be the same

as forecasting a 0700–1900 window (e.g., precipitation

may be less likely in the predawn hours or more likely in

the late afternoon). In reality, as we show below, this

effect appears to be minor. The second, and more sig-

nificant, difference among the providers is that forecast

lead time varies. For example, when we gathered fore-

casts for the West at 1500 PST (1800 EST), TWC 1-day

lead time was 16 h while the NWS 1-day lead time was

13 h, a difference 3 h or 23% (3/13). Table 1 presents the

1–3-day lead times in hours,2 for the 4 climate regions that

are completely within a single time zone: Northeast (ET),

South (CT), Southwest (MT), and West (PT). As one

moves west, TWC is at a disadvantage relative to NWS,

but this effect becomes muted for longer lead times. For

example, TWC’s 3-day lead time is 3 h longer than the

NWS in the western region, but this is only 5% longer

(64 vs 61 h). All else being equal, TWC should exhibit

the same degree of skill as NWS in the Northeast, but

lower skill as one moves west; this difference should

lessen with increasing lead time. As we will show, TWC’s

performance does not conform to this expectation.

As mentioned above, we will discuss lead times in

terms of days, with the caution that the definition for

TWC and CW changes slightly as one moves west (see

Table 1). Regions that are not completely within a single

time zone will have a lead time that is some combination

of the values shown in Table 1. We could have instead

segregated our data by time zone or altered our collec-

tion timing such that each lead time was 12 h. The latter

would have increased the difficulty of the collection task

significantly. The former is simply the reality of segre-

gating data by natural climate regions, which do not fit

perfectly into man-made time zones.

Additionally, through said correspondence and NWS

directives, it was identified that NWS does not display

PoPs of 0%, nor will it generally display PoPs of 10%

except in certain convective weather situations to better

describe isolated precipitation. Therefore, a lack of a PoP

forecast on NWS’s forecast-at-a-glance was interpreted in

this paper to be a PoP of 0%. We believe this assumption

is reasonable and the conclusion most users would reach.

It was further discovered that the NWS fails to post 4-day

PoPs in certain climate regions with high frequency. For

example, in the western region, the NWS failed to post

a 4-day PoP almost 97% of the time. For this reason, we

have excluded all NWS 4-day PoPs from our analysis.

Thus, we will consider only NWS 1–3-day PoPs.

b. Precipitation observations and verification process

Observation stations from the Automated Surface

Observing System (ASOS) and the Automated Weather

Observing System (AWOS) networks were selected that

could be matched with a zip code centroid lying within

10 km of the observation station. Forecasts from TWC

and NWS were queried via this matching zip code, while

CW forecasts were queried via the ICAO code of the

observation station.

PoP forecasts were verified against the precipitation

reported from the observation station. For CW, a pre-

cipitation event was considered when measureable pre-

cipitation was reported in the 24-h summary observations

of the station. For TWC and NWS, the appropriate sum-

mation of hourly precipitation observations was used. A

precipitation event was considered when measureable

precipitation was reported during the 12-h valid window.

As the hourly observations were reported in local time,

conversion to UTC was performed to ensure the proper

12-h valid window was used for each NWS forecast,

taking into account the time zone and daylight savings

time observance of the station.

There were a number of audits performed on both

collected forecasts and observational data to ensure that

both were valid. For observations, if there were not 21 or

more hourly observations the observation was invali-

dated. If the daily high or low temperature reported was

not within 58 of the high and low calculated from the

hourly observations, or the daily reported precipitation

total was not within 0.1 in. of the summed hourly pre-

cipitation observations, the observation was invalidated.

The cross checking between the daily reported and the

TABLE 1. Forecast lead time by provider for the NE, S, SW,

and W climate regions.

NWS 1 day 2 day 3 day

NE 13–25 h 37–49 h 61–73 h

S 13–25 h 37–49 h 61–73 h

SW 13–25 h 37–49 h 61–73 h

W 13–25 h 37–49 h 61–73 h

Diff relative to NWS

TWC 1 day 2 day 3 day 1 day 2 day 3 day

NE 13–25 h 37–49 h 61–73 h 0% 0% 0%

S 14–26 h 38–50 h 62–74 h 8% 3% 2%

SW 15–27 h 39–51 h 63–75 h 15% 5% 3%

W 16–28 h 40–52 h 64–76 h 23% 8% 5%

Diff relative to NWS

CW 1 day 2 day 3 day 1 day 2 day 3 day

NE 6–30 h 30–54 h 54–78 h 254% 219% 211%

S 7–31 h 31–55 h 55–79 h 246% 216% 210%

SW 8–32 h 32–56 h 56–80 h 238% 214% 28%

W 9–33 h 33–57 h 57–81 h 231% 211% 27%

2 The reader can extrapolate longer lead times by simply adding

24 h for each day.
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hourly observations ensured there were a complete set

of hourly observations to construct 12-h precipitation

totals. Forecasts were also invalidated if the PoP was not

between 0% and 100%. They were invalidated if there

was an error with collection, or were of suspicious quality.

A total of 10 TWC forecasts, 6845 CW forecasts, and

19 010 NWS forecasts were invalidated due to an audit.

Additionally, ASOS/AWOS stations are down for

maintenance at least 1 day every few months, in which

case data was not collected. Also, because of network is-

sues and provider Web site issues, there were times when

a forecast could not be collected.

The theoretical maximum number of forecast–

observation pairs per provider per lead time is the

number of stations (734) times the number of days of the

study (730), or 535 820. Including both missing obser-

vational and forecast data and forecasts and observa-

tions invalidated in an audit, 5.21% of possible TWC

forecasts, 5.29% of possible CW forecasts, and 6.44% of

possible NWS forecasts are not present with the ma-

jority of missing data due to missing observations due to

site maintenance, or the observation being invalidated

as a result of hourly quality issues (not having enough or

not matching closely enough with the daily observation).

c. Data summary

Before beginning our analysis, we summarize our

forecast and observation data in Table 2. We obtained

TABLE 2. Summary of forecast and observation data by lead time for each provider.

Cool season (October–March)

National Weather Service The Weather Channel Custom Weather

Lead

time

(days)

No. of

forecasts

Avg

POP

forecast

Frequency

of

precipitation

Mean

error

(ME)

No. of

forecasts

Avg

POP

forecasts

Frequency

of

precipitation

Mean

error

(ME)

No. of

forecasts

Avg

POP

Forecast

Frequency

of

precipitation

Mean

Error

(ME)

1 222 717 0.201 0.218 20.017 237 508 0.248 0.216 0.032 236 497 0.276 0.307 20.030

2 222 086 0.188 0.219 20.031 237 396 0.231 0.216 0.015 236 496 0.300 0.307 20.007

3 217 743 0.168 0.218 20.050 237 390 0.196 0.216 20.020 236 499 0.299 0.307 20.008

4 — — — — 237 445 0.193 0.216 20.024 236 503 0.291 0.308 20.017

5 — — — — 237 387 0.189 0.216 20.028 236 502 0.286 0.307 20.022

6 — — — — 237 519 0.182 0.216 20.034 236 505 0.287 0.307 20.020

7 — — — — 237 407 0.166 0.217 20.050 236 505 0.286 0.307 20.021

8 — — — — 237 399 0.239 0.216 0.023 236 515 0.292 0.306 20.014

9 — — — — 237 399 0.232 0.216 0.016 236 514 0.297 0.307 20.010

10 — — — — — — — — 236 528 0.301 0.307 20.007

11 — — — — — — — — 236 522 0.300 0.308 20.008

12 — — — — — — — — 236 536 0.300 0.307 20.007

13 — — — — — — — — 236 538 0.301 0.307 20.007

14 — — — — — — — — 236 531 0.305 0.307 20.002

Tot 662 546 0.186 0.218 20.032 2 136 850 0.208 0.216 20.008 3 311 191 0.294 0.307 20.013

Warm season (April–September)

National Weather Service The Weather Channel Custom Weather

Lead

time

(days)

No. of

forecasts

Avg

POP

forecast

Frequency

of

precipitation

Mean

error

(ME)

No. of

forecasts

Avg

POP

forecasts

Frequency

of

precipitation

Mean

error

(ME)

No. of

forecasts

Avg

POP

forecast

Frequency

of

precipitation.

Mean

Error

(ME)

1 248 348 0.189 0.220 20.030 257 965 0.225 0.218 0.006 259 250 0.260 0.324 20.064

2 248 266 0.175 0.219 20.045 257 971 0.216 0.218 20.002 259 248 0.308 0.323 20.015

3 247 564 0.158 0.219 20.060 257 975 0.192 0.218 20.026 259 241 0.307 0.324 20.017

4 — — — — 257 973 0.190 0.219 20.029 259 238 0.304 0.324 20.020

5 — — — — 257 983 0.190 0.219 20.029 259 215 0.302 0.324 20.022

6 — — — — 257 963 0.189 0.220 20.031 259 205 0.302 0.326 20.024

7 — — — — 257 951 0.177 0.220 20.043 259 201 0.285 0.326 20.042

8 — — — — 257 944 0.249 0.221 0.028 259 201 0.288 0.326 20.039

9 — — — — 257 946 0.241 0.219 0.022 259 210 0.284 0.325 20.041

10 — — — — — — — — 259 198 0.278 0.325 20.047

11 — — — — — — — — 259 204 0.276 0.325 20.049

12 — — — — — — — — 259 185 0.276 0.325 20.048

13 — — — — — — — — 259 174 0.275 0.324 20.048

14 — — — — — — — — 259 167 0.276 0.324 20.048

Total 744 178 0.174 0.219 20.045 2 321 671 0.208 0.219 20.012 3 628 937 0.287 0.325 20.037
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about 250 000 PoPs for each season lead time–provider

combination. In total, we obtained 1 406 724 NWS,

4 458 521 TWC, and 6 940 128 CW PoP forecasts–

observation pairs —yielding a total of 12 805 373. The

difference in the number of observations by lead time

is a result of the data validation process described above.

In the case of the NWS and TWC, precipitation was

observed about 22% of the time. Precipitation is more

frequent in our CW observations, occurring about 31%

of the time, since CW is providing a 24-h PoP.

4. Forecast verification

As shown in Table 2, when averaged over all regions,

the NWS tends to underforecast the PoP, as is evidenced

by their negative MEs in both the cool and warm seasons.

For example, their 3-day warm-season PoP averages

0.158, while precipitation was observed at the rate of

0.219, yielding a ME of 20.060. TWC under forecasts

3–7-day PoPs in the cool season and 2–7-day PoPs dur-

ing the warm season. CustomWeather underforecasts the

PoP for all lead times in both seasons; their warm-season

1-day forecast is the most biased PoP in our dataset.

Table 3 presents the variance in the forecasts and the

variance in the observations by season and lead time. As

expected, since they are both forecasting a 12-h PoP, the

variance in the NWS and TWC observations are nearly

identical; CW’s 24-h observations exhibit greater vari-

ance, confirming that their forecasting task is more diffi-

cult. We also notice that the variance in the observations

is slightly higher in the warm season, but is essentially

independent of lead time. This last point follows since

s2
Xjl 5 p(x 5 1jl)p(x 5 0jl) and the unconditional proba-

bility of precipitation within a 12- or 24-h window does

TABLE 3. Variance of forecasts and observations by lead time for each provider.

Cool season (October–March)

National Weather Service The Weather Channel Custom Weather

Lead time

(days)

No. of

forecasts

Variance of

forecasts

Variance

of obs

No. of

forecasts

Variance of

forecasts

Variance

of obs

No. of

forecasts

Variance of

forecasts

Variance

of obs

1 222 717 0.093 0.170 237 508 0.071 0.169 236 497 0.093 0.213

2 222 086 0.074 0.171 237 396 0.057 0.170 236 496 0.084 0.213

3 217 743 0.055 0.171 237 390 0.029 0.169 236 499 0.069 0.213

4 — — — 237 445 0.025 0.170 236 503 0.049 0.213

5 — — — 237 387 0.022 0.170 236 502 0.037 0.213

6 — — — 237 519 0.019 0.169 236 505 0.029 0.213

7 — — — 237 407 0.021 0.170 236 505 0.067 0.213

8 — — — 237 399 0.047 0.169 236 515 0.067 0.213

9 — — — 237 399 0.046 0.169 236 514 0.069 0.213

10 — — — — — — 236 528 0.071 0.213

11 — — — — — — 236 522 0.071 0.213

12 — — — — — — 236 536 0.071 0.213

13 — — — — — — 236 538 0.073 0.213

14 — — — — — — 236 531 0.075 0.213

Warm season (April–September)

National Weather Service The Weather Channel Custom Weather

Lead time

(days)

No. of

forecasts

Variance of

forecasts

Variance

of obs

No. of

forecasts

Variance of

forecasts

Variance

of obs

No. of

forecasts

Variance of

forecasts

Variance

of obs

1 248 348 0.062 0.171 257 965 0.045 0.171 259 250 0.062 0.219

2 248 266 0.049 0.171 257 971 0.040 0.170 259 248 0.062 0.219

3 247 564 0.037 0.171 257 975 0.025 0.171 259 241 0.049 0.219

4 — — — 257 973 0.023 0.171 259 238 0.039 0.219

5 — — — 257 983 0.022 0.171 259 215 0.030 0.219

6 — — — 257 963 0.021 0.172 259 205 0.024 0.220

7 — — — 257 951 0.023 0.172 259 201 0.071 0.220

8 — — — 257 944 0.056 0.172 259 201 0.070 0.220

9 — — — 257 946 0.057 0.171 259 210 0.070 0.219

10 — — — — — — 259 198 0.069 0.219

11 — — — — — — 259 204 0.067 0.219

12 — — — — — — 259 185 0.067 0.219

13 — — — — — — 259 174 0.068 0.219

14 — — — — — — 259 167 0.067 0.219
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not depend upon lead time. These results are consistent

with Murphy and Winkler (1992), whose 12-h observa-

tion variance ranged from 0.163 to 0.173.

In the interest of space, we do not present observation

and forecast variance by region, but summarize a few

important results here. During the cool season, the 1–3-day

variance of observations in the West for the NWS and

TWC averaged 0.148 and 0.143, respectively—a differ-

ence of about 3%. Thus, TWC’s forecasting task was eas-

ier, but the difference is quite small. The results for the

Southwest, South, and Northeast are nearly identical

during the cool season. During the warm season, the

1–3-day average variance of observations in the West

was 0.055 for the NWS and 0.049 for TWC, a difference

of about 11%. Again, the TWC’s task was slightly easier.

TWC’s task in the Southwest was slightly more difficult

than the NWS during the warm season, with an average

observation variance of 0.133 compared to 0.128 for

NWS (about 4%). The results in the South and North-

east are nearly identical.

The variance of the NWS’s forecasts (Table 3) de-

creases with lead time, as one would expect. TWC’s

forecasts exhibit substantially less variance than the NWS,

meaning that TWC’s near-term forecasts are sharper

than NWS. In addition, TWC forecast variances initially

decrease, but then increase beginning with the 7-day

forecast. In fact, during the warm season, the variance in

TWC’s forecasts are greater for the 8–9-day PoPs than

all other lead times, including the 1-day forecast. Thus,

TWC’s long-term forecasts are sharper than their near-

term forecasts, which is clearly problematic. This be-

havior is related to the TWC’s forecasting procedures.

As BK08 explained, TWC’s 7–9-day forecasts represent

the ‘‘objective’’ guidance provided by their computer

forecasting systems. Human forecasters do not in-

tervene in these cases, as they do for the 1–6-day fore-

casts. Similar behavior is observed in CW’s forecasts:

forecast variance decreases, nearly linearly, with lead

time until day 7, at which point it increases dramatically.

Skill scores and MSE for the cool and warm seasons,

averaged over each geographic region, are presented in

Table 4 (we present regional results below). The NWS’s

cool-season skill scores are 0.469, 0.409, and 0.329, for

the 1-, 2-, and 3-day forecasts, respectively. In the warm

season, the corresponding NWS SS are 0.358, 0.295, and

0.223. For comparison, based on a much smaller dataset,

Murphy and Winkler (1992) found NWS 1–3-day SS of

0.567, 0.376, and 0.295 in the cool season and 0.365,

0.240, and 0.210 for the warm season.

The TWC’s cool-season skill scores are 0.420, 0.369,

and 0.269, for the 1-, 2-, and 3-day forecasts, respectively.

In the warm season, the corresponding SS are 0.330, 0.278,

and 0.199. For comparison, BK08 found TWC 1–3-day SS

of 0.443, 0.392, and 0.291 in the cool season and 0.225,

0.194, and 0.154 for the warm season. Thus, BK08’s SS

were slightly higher in the cool season and lower in the

warm season. The exact reason for this unknown, but

BK08’s dataset was much smaller, containing only about

10 000 forecasts per day during the cool season and 6800

during the warm season—compared to the nearly 250 000

we use here. In addition, BK08’s observation window was

2 November 2004–16 January 2006.

Considering only the NWS and TWC, we see that

NWS’s forecasts exhibit more skill. For example, TWC’s

skill scores are about 5 percentage points lower than the

NWS during the cool season and about 2 percentage

points lower during the warm season. As detailed in

section 3a, the definitional differences in lead time tend

to favor the NWS, which certainly affects our results to

some extent. However, this definitional difference is

smallest for 3-day PoPs and we see that the cool-season

SS difference between TWC and NWS is the largest at

this point—0.269 versus 0.329 a difference of 0.060 or

18%. TWC’s 8- and 9-day forecasts exhibit negative

skill and are, thereby, worse than forecasting the sam-

ple climatological frequency of precipitation.

CustomWeather’s 1- and 2-day SS are lower than the

NWS, while their 3-day PoP is more skillful, especially

during the warm season. While SS normalizes for fore-

cast difficulty, the reader must keep in mind that CW is

providing a 24-h PoP forecast; a more skillful 24-h PoP

does not imply that a 12-h CW PoP would also be more

skillful. CustomWeather’s 17-day forecasts are quite poor.

Figure 2 displays the normalized reliability and reso-

lution [Eq. (7)] for each provider. Performance is clearly

separated into two domains in the case of TWC and CW.

For example, TWC’s performance decreases markedly

beyond 7 days. In the case of CW, forecasts beyond

6 days are remarkably poor. Within the range of rea-

sonable forecast performance, we see that the resolution

term is much larger than the reliability penalty for mis-

calibration. Furthermore, as one would expect, resolu-

tion decreases with lead time. On the other hand,

reliability is nearly independent of lead time. This too

should be expected since there is no reason that cali-

bration per se should decrease with lead time.

The results discussed above were averaged across all

climate regions. Table 5 presents SS by region and sea-

son for each provider. The cells with bold (italic) font in

are the highest (lowest) skill scores for a particular lead

time and provider. The SS by region is widely dispersed.

For example, the NWS’s 1-day SS during the cool season

ranges from a low of 0.282 in the west north central to

a high of 0.516 in the Southeast. Lower SS tend to be

associated with lower observational variance, since it is

harder to improve on climatology (the sample average)
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if weather does not vary, but this relationship is not

perfect. For example, the lowest observation variance in

the warm season occurred in the West, yet, this region

had two of the largest skill scores. As was the case when

averaged over all regions, the NWS outperforms TWC.

For example, in the Northeast, where the lead times and

observation windows are the same for both providers,

the NWS SS are 11%–25% higher than TWC in the cool

season and 1%–23% higher than TWC during the warm

season. Likewise, in the Southeast, where forecasting

tasks are also closely matched, the NWS performance

exceeds TWC. In fact, TWC’s SS only exceeds the NWS

in 3-season lead time–region combinations: 1- and 2-day

forecasts in the West, where it is at the greatest lead-

time disadvantage, during the cool season (0.508 vs 0.476

and 0.438 vs 0.426) and 3-day forecasts in the east north

central during the warm season (0.190 vs 0.185). Thus,

the aggregation of data across regions and lead-time

differences does not appear to alter our main conclusion

regarding the superior performance of the NWS, rela-

tive to TWC. Of course, this does not imply that the NWS

outperforms TWC for all possible locations.

During the cool season, the west north central gen-

erates the lowest SS for all three providers for most lead

times. Performance is mixed during the warm season.

For example, both the NWS and TWC perform well in

the West, while this is the worst performing region for

CW. In fact, CW performance in the West is much worse

than other regions.

As was the case when we averaged over all regions, we

can gain additional insight into forecasting performance

by looking at the components of skill score. Figure 3

presents the normalized reliability and resolution for the

NWS’s 1–3-day forecasts. First, we see that resolution is

TABLE 4. Cool- and warm-season skill scores by lead time for each provider.

Cool season (October–March)

National Weather Service The Weather Channel Custom Weather

Lead time

(days)

No. of

forecasts

Mean square

error (MSE)

Skill score

(SS)

No. of

forecasts

Mean square

error (MSE)

Skill score

(SS)

No. of

forecasts

Mean square

error (MSE)

Skill score

(SS)

1 222 717 0.090 0.469 237 508 0.098 0.420 236 497 0.119 0.438

2 222 086 0.101 0.409 237 396 0.107 0.369 236 496 0.127 0.405

3 217 743 0.114 0.329 237 390 0.124 0.269 236 499 0.139 0.345

4 — — — 237 445 0.133 0.214 236 503 0.153 0.282

5 — — — 237 387 0.143 0.154 236 502 0.167 0.213

6 — — — 237 519 0.150 0.117 236 505 0.180 0.154

7 — — — 237 407 0.160 0.056 236 505 0.234 20.099

8 — — — 237 399 0.176 20.041 236 515 0.239 20.124

9 — — — 237 399 0.183 20.080 236 514 0.249 20.171

10 — — — — — — 236 528 0.256 20.203

11 — — — — — — 236 522 0.257 20.205

12 — — — — — — 236 536 0.259 20.218

13 — — — — — — 236 538 0.268 20.258

14 — — — — — — 236 531 0.270 20.269

Warm season (April–September)

National Weather Service The Weather Channel Custom Weather

Lead time

(days)

No. of

forecasts

Mean square

error (MSE)

Skill score

(SS)

No. of

forecasts

Mean square

error (MSE)

Skill score

(SS)

No. of

forecasts

Mean square

error (MSE)

Skill score

(SS)

1 248 348 0.110 0.358 257 965 0.114 0.330 259 250 0.151 0.312

2 248 266 0.121 0.295 257 971 0.123 0.278 259 248 0.154 0.295

3 247 564 0.133 0.223 257 975 0.137 0.199 259 241 0.163 0.255

4 — — — 257 973 0.143 0.164 259 238 0.173 0.211

5 — — — 257 983 0.148 0.134 259 215 0.184 0.159

6 — — — 257 963 0.154 0.102 259 205 0.192 0.128

7 — — — 257 951 0.165 0.038 259 201 0.239 20.086

8 — — — 257 944 0.188 20.093 259 201 0.242 20.102

9 — — — 257 946 0.197 20.147 259 210 0.248 20.132

10 — — — — — — 259 198 0.253 20.153

11 — — — — — — 259 204 0.253 20.155

12 — — — — — — 259 185 0.257 20.171

13 — — — — — — 259 174 0.262 20.196

14 — — — — — — 259 167 0.262 20.197
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the primary determinant of the SS, being an order of

magnitude larger than the normalized reliability. Sec-

ond, even after normalizing for the variance of the ob-

servations, large differences between regions remain.

For example, for the 1-day forecasts, normalized reso-

lution varies from 0.26 in the Southwest to 0.41 in the

Northwest. Finally, as lead time is increased we see

a steady decline in normalized resolution and reliability

(down and to the left).

a. Calibration-refinement factorization

Figure 4 displays calibration or attributes diagrams

(Hsu and Murphy 1986) for the NWS 1–3-day PoP

forecasts, for the warm season, averaged over all re-

gions. In the interest of space, we do not present cool-

season or regional results, which are available from the

corresponding author by request. A line at 458 (omitted

here) represents PoPs that are perfectly reliable or

calibrated [i.e., p(x 5 1jf, l) 5 f ]. Based on the normal

approximation to the binomial distribution, and as-

suming that forecasts are independent, we establish a

99% credible interval around this line of perfect cali-

bration and label this region ‘‘calibrated.’’ There is a 1%

chance a forecast–observation pair would lay outside

this region (0.5% chance of being above and 0.5%

chance of being below). For example, if the PoP was

truly f, then there is a 99% chance that the actual relative

frequency of precipitation would be within

f 6 F21(0. 995)
f (1 2 f )

N

� �1/2

, (8)

where F21 is the inverse of the standard normal cumu-

lative [F21(0. 995) 5 2:576] and N is the number of fore-

casts.3 We omit PoPs that were forecasted fewer than 40

times. A cutoff of 40 is a common in hypothesis testing.

The variance of the binomial distribution is Np(1 2 p).

The normal approximation to the binomial is very good

when this variance is greater than 10. Thus, if p 5 ½ then

N should be greater than 40. If a forecast–observation

pair lies outside the range established by Eq. (8) then we

say the forecast is not well calibrated. Calibration is

important if users take PoPs at face value, which is likely

the case in practice; few users would know how to cali-

brate the forecasts, which they could now do using these

research results. As mentioned, the calibrated region as-

sumes PoP forecasts are independent. This is certainly not

true in reality, but the degree of dependence is unknown

and we do not attempt to account for it here. Accounting

for dependence would widen the calibration interval.

The horizontal line labeled ‘‘no resolution’’ identifies

the case where the frequency of precipitation is in-

dependent of the forecast. The line halfway between no

resolution and calibrated is labeled ‘‘no skill.’’ Along

this line the SS is equal to zero and according to Eq. (5),

the forecast does not reduce uncertainty in the obser-

vation; points above (below) this line exhibit positive

(negative) skill. The three lines cross at the sample cli-

matological frequency of precipitation mXjl.

The dots are the relative frequency with which pre-

cipitation was observed for each forecast, p(xj f, l). We

see that most of the NWS PoPs are not well calibrated.

FIG. 2. Skill score components by season for each provider.

3 This is identical to a two-tailed t test with a 1% level of sig-

nificance.
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For example, only 1-day PoPs of 0.1 and 0.9 are well

calibrated, while 0.2 and 0.3 are very close. Some mis-

calibration is undoubtedly caused by the decision to

forecast at a resolution of one-tenth (e.g., 0.1, 0.2). For

example, shifting 1-day PoPs between 0.4 and 0.8 to the

right by 0.05 would improve calibration. In other words,

a PoP of 0.4 summarizes all PoPs between 0.4 and 0.5

and might be better thought of as a PoP of 0.45.

TWC’s 1–8-day calibration diagrams appear in Fig. 5;

9-day performance is similar to 8-day performance and

is omitted. Some PoPs are considerably miscalibrated.

For example, when TWC forecasted a PoP of 0.7, pre-

cipitation occurred 84% of the time, which is more

frequent than when TWC gave a 1-day PoP of 0.8.

Whether or not a difference of 0.14 between the forecast

and the observation is important depends, of course, on

the decision situation. In some cases, such as planning

a picnic, users may not distinguish between and 0.70 and

a 0.84 chance of rain. On the other hand, a utility might

plan differently in these two situations. As was true with

the NWS, increasing midrange PoPs by 0.05 would im-

prove calibration.

TWC’s performance decreases markedly after 6 days.

As was discussed in BK08, the meteorologists at TWC

receive guidance from a mixture of numerical, statisti-

cal, and climatological inputs provided by computer sys-

tems. The human forecasters rarely intervene in forecasts

beyond 6 days. Thus, the verification results of the 7–9-day

forecasts represent the ‘‘objective’’ machine guidance

being provided to TWC’s human forecasters. In this

respect, the human forecasters appear to add consider-

able skill, since the 1–6-day performance is much better.

CustomWeather’s 1–8-day calibration diagrams ap-

pear in Fig. 6; 9–14-day results are similar to 8-day re-

sults and are omitted. Their 1-day PoPs are considerably

biased (as we also saw in Table 1), but still exhibit pos-

itive skill. It is quite interesting that CW does seem to be

able to forecast at the 0.01 level. That is, in most cases, it

was more likely to precipitate for a PoP of f than for a PoP

of f 2 0.01 ( f . 0). CustomWeather’s 2-day forecast is

much better than their 1-day forecast, with the 1-day bias

having been removed. In addition, many of the 2-day PoPs

FIG. 3. Comparison of NWS SS components as a function of lead

time (warm season).

FIG. 4. NWS calibration diagrams for 1–3-day PoP forecasts.
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are well calibrated. CustomWeather’s performance

changes dramatically after 6 days. Their 17-day forecasts

are quite poor; these forecasts exhibit almost no resolution.

The gray areas in Figs. 4–6 present the frequency

p( f) with which different PoPs are forecast. The three

providers differ substantially in this regard. Beginning

with the NWS (Fig. 4), we see very few 0.1 PoP forecasts.

As discussed in section 3a, the NWS often, but not al-

ways, fails to report PoPs below 0.2 and we treat the

failure to report a PoP as a forecast of 0%. Beyond

PoPs of 0.2, the NWS PoP frequency decreases mono-

tonically and smoothly, as one might expect. TWC’s

forecasts (Fig. 5), on the other hand, appear to be con-

centrated at particular PoPs, while avoiding others. This

FIG. 5. TWC calibration diagrams for 1–8-day PoP forecasts.
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is most evident in the longer lead times. For example, we

see that TWC provides relatively few 0.2 PoPs for 3–7-

day lead times, despite the fact that the average occur-

rence of precipitation in our sample was approximately

0.2 (see Table 2). One would think that PoPs should

become more concentrated near the climatological av-

erage as lead time increases. This phenomenon is clearly

evident in CW’s 6-day forecasts (Fig. 6). Instead of be-

coming concentrated around climatology, TWC’s long-

term PoPs center on 0.0 and 0.6, with a very noticeable

gap at 0.5. As discussed in BK08, this behavior is in-

tentional because TWC believes that users will interpret

a PoP of 0.5 as a lack of knowledge (after all, there are

only two possible outcomes), when, in fact, a forecast of

FIG. 6. CW calibration diagrams for 1–8-day PoP forecasts.
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0.5 is more than twice the climatological average and

thus a strong statement regarding the chance of pre-

cipitation. This policy degrades the quality of TWC’s

forecasts.

While CW’s pattern of 1–6-day PoP forecasts (Fig. 6)

exhibit a few irregularities (e.g., the lower likelihood of

PoPs around 0.1 in the 5-day forecast), it is generally con-

centrated at the long-term average precipitation rate and

decreases monotonically with increasing PoP. This is,

again, quite interesting since CW forecasts with a resolu-

tion of 0.01. The 17-day forecasts are markedly different,

however. Rather than the smooth and continuous pattern

observed in the 1–6-day forecasts, the 17-day forecasts

are concentrated at particular PoPs and avoid others al-

together. We notified G. Flint (founder and CEO of CW)

of this phenomena and he noted that CW is ‘‘having to

work with low resolution data beyond day 7 [our 6-day

forecast] that doesn’t actually provide . . . substantive PoP

values so we had to derive them from precipitation totals.

This methodology obviously needs improvement so this is

certainly something that we need to work on.’’

b. Likelihood base-rate factorization

Figure 7 displays the likelihood functions, p( f jx 5 1, l)

and p( f jx 5 0, l) for the NWS 1–3-day warm-season PoP

forecasts averaged over all regions. Again, regional and

cool-season results are available from the corresponding

author by request. We see, by the small spike at 0 and

the lack of a spike at 1, that the NWS is more skilled at

forecasting a lack of precipitation than precipitation.

For example, given that it precipitated (x 5 1; the solid

line), the NWS was almost equally likely to give a fore-

cast between 0.2 and 0.6. Furthermore, they were very

unlikely to have given a PoP of 0.9 or 1.0 when it pre-

cipitated 1-day later. The likelihood functions cross

between PoPs of 0.2 and 0.3, which contains the sample

climatological frequency of precipitation.

TWC’s 1–8-day likelihood graphs appear in Fig. 8;

longer lead times are similar to the 8-day results and are

omitted. Again, we see TWC’s predilection for forecasting

particular PoPs and avoiding 0.5. The very large spike at

a PoP of 0.6 in their 8-day forecast is especially telling;

TWC was more likely to provide a PoP of 0.6 eight days

out than any other forecast. Even when it did not pre-

cipitate, a PoP of 0.6 was provided over 20% of the time.

CustomWeather’s 1–8-day likelihoods are shown in

Fig. 9; longer lead times are similar to the 8-day results

and are omitted. Their near-term forecasts are sharper

than other providers, as evidenced by the small spike at

PoPs near 1.0.4 This could be due to the fact that CW

forecasts at a resolution of one-hundredth. In situations

FIG. 7. NWS likelihood diagrams for 1–3-day PoP forecasts.

4 Since CW forecasts at a resolution of 0.01, rather than 0.1, their

PoP frequency tends to be about one-tenth that of TWC or the

NWS, which explains the scale of the vertical axis in these graphs.
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where precipitation was not observed, all three pro-

viders were more likely to provide a low PoP. Custom-

Weather’s performance is especially impressive in this

regard. Their 17-day likelihoods, on the other hand, are

completely overlapping, highlighting the independence

of precipitation observations and their forecasts.

5. Discussion and conclusions

In this study, we have analyzed the absolute and rel-

ative performance of the NWS, TWC, and CW’s PoP

forecasts. In an absolute sense, all three providers ex-

hibit positive skill: the NWS from 1 to 3 days, TWC from

FIG. 8. TWC likelihood diagrams for 1–8-day PoP forecasts.
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1 to 7 days, and CW from 1 to 6 days. Yet, individual PoP

forecasts are miscalibrated, considerably so in some

cases. Our analysis could be used to calibrate future

forecasts from these providers. Doing so, as shown by the

resolution component in Fig. 2, would result in positive

skill for all lead times, but would reduce the sharpness of

TWC and CW’s 17-day forecasts. The sharpness of the

existing forecasts implies a level of certainty about future

precipitation that is not borne out in the observations.

We have also reconfirmed BK08’s findings that TWC’s

PoP forecasts encode some odd forecasting behaviors;

their avoiding PoPs of 0.2 and 0.5, being the most striking

FIG. 9. CW likelihood diagrams for 1–8-day PoP forecasts.
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examples. These behaviors seem rooted in easily change-

able policies, rather than in the difficulty of the fore-

casting task.

Perhaps the most interesting feature we found was

the ability of CW to forecast at a resolution of 0.01. In

most cases, but not always, when CW provided a PoP of

f, it was more likely to precipitate than when they gave

a forecast of f 2 0.01.

In a relative sense, we only compare the PoP forecasts

of TWC and NWS. Even here, our ability to draw de-

finitive conclusions is hampered by differences in lead-

time and observation windows. However, in situations

where these parameters were identical (e.g., the North-

east region), or nearly so (e.g., the Southeast region), the

NWS SS exceed those of the TWC. This performance,

combined with TWC’s forecasting behaviors outlined

above, led us to believe that TWC is not adding skill

above and beyond what is in the NWS forecasts. Yet,

TWC is adding value by providing forecasts that cover

the 0700–1900 LT window, which is probably of more

relevance to many users in the western region, for ex-

ample, than a 0400–1600 LT window, which is provided

by the NWS.

To summarize, we hope that this analysis will help the

NWS, TWC, and CW provide better forecasts and help

users better interpret and use these forecasts in their

decision making.
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