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In this paper, we develop a practical and flexible framework for evaluating sequential exploration strategiesin the case where the exploration prospects are dependent. Our interest in this problem was motivated by
an oil exploration problem, and our approach begins with marginal assessments for each prospect (e.g., what
is the probability that the well is wet?) and pairwise assessments of the dependence between prospects (e.g.,
what is the probability that both wells i and j are wet?). We then use information-theoretic methods to construct
a full joint distribution for all outcomes from these marginal and pairwise assessments. This joint distribution
is straightforward to calculate, has many nice properties, and appears to provide an accurate approximation
for distributions likely to be encountered in practice. Given this joint probability distribution, we determine an
optimal drilling strategy using an efficient dynamic programming model. We illustrate these techniques with
an oil exploration example and study how dependence and risk aversion affect the optimal drilling strategies.
The information-theory-based techniques for constructing joint distributions and dynamic programming model
for determining optimal exploration strategies could be used together or separately in many other applications.
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1. Introduction
The motivation for this paper began with a consult-
ing engagement for a client that wanted to priori-
tize its deep-water oil and gas exploration program.
The client had grouped the oil and gas prospects
into clusters it believed to be geologically dependent
and wanted to understand how the results for one
well change the chance of success for the remain-
ing undrilled prospects and how this information
should affect the drilling strategy. Given that the
wells cost tens of millions of dollars to drill, an
optimal drilling program could generate significant
savings and make an otherwise unattractive explo-
ration opportunity economically viable. Researchers
exploring multiple related R&D projects face similar
problems—given dependent projects, which projects
should they pursue first?
In theory, this is a straightforward problem. We

simply need to specify the joint probability distribu-
tion for all possible combinations of well outcomes

and then build a decision tree that considers all pos-
sible drilling sequences and possible contingencies:
Which well, if any, should we drill first? If that well is
wet (or dry), which well do we drill next? And so on.
However, in practice this is a very difficult prob-

lem. First, the assessment of the joint distribution for
n wells requires 2n − 1 probability assessments. If we
decompose the assessment of the joint distribution
into a series of conditional assessments, many of the
assessments will be heavily conditioned. For exam-
ple, with nine wells, the assessments for the ninth
well will be conditioned on the outcomes of eight
other wells and there will be 28 or 256 different con-
ditioning scenarios to consider. Most decision mak-
ers and experts do not have the time or energy to
provide this many assessments, and the complex con-
ditioning makes it difficult to be consistent. Second,
even if we could generate the necessary joint prob-
ability distribution, a straightforward decision tree
model for determining the optimal drilling sequence
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would be unmanageably large. For example, with
n= 9 wells, this straightforward decision tree would
include approximately 460 million scenarios.
In this paper, we develop a practical and flex-

ible approach for analyzing sequential exploration
problems. After reviewing related literature in the
remainder of this section, we begin in §2 by describ-
ing an example involving six wells that we will use
to demonstrate the methods proposed in the paper.
This is a simplified version of the client’s original
problem. In §3, we describe the use of information-
theory-based methods for constructing a joint prob-
ability distribution given marginal probabilities for
each well and pairwise joint probability assessments
for all pairs of wells; this basic information could
be assessed in a variety of ways. The resulting joint
probability distributions are straightforward to calcu-
late and have an intuitive interpretation. In §4, we
describe a dynamic programming model for deter-
mining the optimal drilling sequence in both risk-
neutral and risk-averse settings and discuss the form
of the optimal policies in our example. This dynamic
programming model exploits the recombining struc-
ture of the problem and allows one to solve problems
efficiently. A spreadsheet that implements the proce-
dures of §§3–4 is available from the journal’s website
(http://da.pubs.informs.org/online-supp.html). In §5,
we examine the accuracy of our approach for con-
structing joint probability distributions using a simu-
lation study. In §6, we discuss some possible exten-
sions and other applications of these models and con-
clude the paper.
There are several streams of decision analysis

research that address related problems. First, the
problem of modeling dependence in multiple well-
drilling programs has long been of interest in the
oil and gas decision analysis literature. For example,
Newendorp (1975) argues that wells drilled in a sin-
gle basin are typically dependent and discusses some
of the challenges of modeling dependence in such
a setting. More recently, Wang et al. (2000) discuss
modeling dependence and propose a simple model
for modeling dependence in the case where wells are
assumed to be exchangeable, meaning the wells all
have identical probabilities of success and the con-
ditional probabilities for later wells depend on how
many wells have succeeded or failed, but not on

which specific wells succeeded or failed. The Wang
et al. model does not allow the possibility that some
wells are more likely to hit than others and/or more
strongly related than others. Keefer (2004) develops
an “underlying event” model for approximately cap-
turing positive dependence among binary events; we
will discuss this approximation in §5 and compare it
to our proposed approach. Although the underlying
event model has been successfully applied in some
settings (e.g., Keefer et al. 1991), the underlying event
and the exchangeable well assumptions both seem too
restrictive for general use in sequential exploration
problems.
Second, our probabilistic model is related to recent

work on modeling dependence in decision analysis.
In §3, we focus on constructing a joint distribution
given marginal probability assessments and pairwise
assessments of dependence; as we will see, the result-
ing distribution can be related to “copulas.” Clemen
and Reilly (1999) and Yi and Bier (1998) discuss the
use of copulas in decision and risk analysis. The use
of information-theoretic methods to construct prob-
ability distributions for decision analysis dates back
to the seminal paper by Jaynes (1968). MacKenzie
(1994), Lowell (1994), Smith (1995), and Abbas (2003,
2006) discuss the use of information-theoretic meth-
ods for constructing joint distributions in decision
analysis. More specifically, MacKenzie (1994) uses
entropy methods to construct a joint distribution
given marginal distributions and pairwise correlation
coefficients. In a study of sensitivity to dependence,
Lowell (1994) uses entropy methods to construct joint
distributions with constraints on the marginal and
conditional probabilities. Smith (1995) studies bounds
on values and policies given constraints on proba-
bilities and the entropy of the distribution. Abbas
(2003, 2006) illustrates the use of entropy methods
with marginal, pairwise, and/or three-way probabil-
ity assessments to specify a joint distribution and
uses simulation methods to study the accuracy of this
approach. Similar problems arise in the information-
theoretic analyses of contingency tables (see, e.g.,
Gokhale and Kullback 1978), though there the focus is
on developing a model of the response of one dichoto-
mous “effect” variable as a function of the treatment
categories, rather than constructing a full joint proba-
bility distribution.
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Finally, this paper is related to recent work on
dynamic decision modeling or “real options.” There
are a number of papers that have applied real-options
methods to evaluating oil and gas investments (see,
e.g., Paddock et al. 1988; Smith and McCardle 1998,
1999) that focus on information gathering and its
impact on decision making. The optimal sequential
drilling problem we consider here can be viewed
as a specific example of a dynamic decision prob-
lem that illustrates general features of such problems.
Smith and Thompson (2004) also consider sequen-
tial exploration as a real-options problem and ana-
lytically characterize optimal drilling orders in some
special cases. They assume all the wells are “in the
money,” in that they are independently economically
viable in isolation and describe ordering rules for
the case of n = 2 wells. They also develop an order-
ing rule for larger n in the case where, in addition
to assuming that all wells are “in the money,” they
assume a particular “common risk” model and have
additional assumptions. Though we will discuss these
rules in §4, our goal is to develop methods for solv-
ing the problem in general rather than identify simple
rules that are optimal in specialized circumstances.
We view the primary contribution of this paper

to be the development of a practical and flexible
approach for analyzing a class of problems—sequen-
tial exploration problems—that occur frequently in
practice. The information theory and dynamic pro-
gramming methods that we use are quite general
and well established; the contribution here is in
identifying an appropriate and efficient formulation
of this class of problems using these techniques.
Although we focus on sequential exploration prob-
lems, we believe that our paper also makes some
contributions that may have implications beyond
this specific context. First, as discussed in §3, the
information-theoretic approach with pairwise prob-
ability constraints leads to a nice probability distri-
bution (see Equation (7)) whose parameters could
be assessed directly or related to distances between
prospects; this distribution could find uses outside the
sequential exploration context. Second, the dynamic
programming model illustrates the complex effects
of dependence in sequential decision problems; our
sequential exploration problem is a relatively sim-
ple example of a dynamic decision problem with

dependence and, as discussed in §4, we already
have policies that confound most intuitive “rules” for
solving such problems. Third, our accuracy analy-
sis in §5 provides a demonstration of the effective-
ness of information-theoretic methods in a sequential
decision-making context that adds to the body of
work demonstrating its effectiveness in other con-
texts (see, e.g., Jaynes 1982 or Abbas 2006). Finally, by
illustrating how information-theoretic and dynamic
programming techniques can be used in decision
analysis, our paper has some tutorial value that
may help inspire the use of these methods in other
contexts.

2. An Illustrative Example
Suppose we are contemplating drilling wells at six
sites. The marginal probability of success (i.e., a “wet”
well) �pi�, the expected value given success �si�, and
the expected value given failure �fi� for each well
are shown in Table 1; these expected values are in
millions of dollars and represent net present values
(NPVs) in the period the well is drilled. The expected
value given failure is the expected drilling cost. The
expected value given success is the expected net
present value of the hydrocarbon production stream
less the drilling costs, costs of completion, production
platforms, etc. These expectations take into account
uncertainty in gas and/or oil prices, reserves, produc-
tion, drilling costs, and all other uncertainties. The
intrinsic values shown in Table 1 are the uncondi-
tional expected values: pisi + �1− pi�fi. In this exam-
ple, the intrinsic values are all negative, meaning the
wells are not “in the money,” and the company would
not choose to drill them if they were considered in
isolation.

Table 1 Example Well Data

Expected values

Probability of Given Given Intrinsic
Well success �pi � success �si � failure �fi � value

1 0.35 60 −35 −1�75
2 0.49 15 −20 −2�85
3 0.53 30 −35 −0�55
4 0.83 5 −40 −2�65
5 0.33 40 −20 −0�20
6 0.18 80 −20 −2�00
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Though the assumptions shown in Table 1 do not
reflect dependence among the different prospects, the
sites were in the same general area and shared some
common features. The company felt that by drilling
wells sequentially, it could use the information from
early wells to guide later drilling decisions and per-
haps make this exploration opportunity attractive. As
discussed in the introduction, to fully model this,
we need to specify the joint distribution for the well
results and then evaluate all the potential sequential
drilling strategies.
The full specification of the joint distribution in this

case would require 63 �26−1� probability assessments,
including assessments conditioned on the outcome of
five other wells. Although this full assessment was
too difficult to manage, the company’s experts were
comfortable making pairwise conditional assessments
p�well j wet � well i wet� for each pair of prospects.
These are shown in Table 2 along with the pairwise
correlation coefficients implied by these assessments.
Note that well 4 was assumed to be pairwise inde-
pendent of the other five wells: the conditional prob-
abilities for well 4 being wet, given that well 1, 2, or 3
is wet are equal to the marginal probability (0.83) and
the conditional probabilities for wells 5 and 6 given
that well 4 is wet are equal to their marginal proba-
bilities (0.33 and 0.18, respectively). The implied pair-
wise correlation coefficients involving well 4 are thus
all zero. Wells 2 and 5 and wells 3 and 6 have the sub-
stantially larger pairwise correlation coefficients (	25 =
0
459 and 	36 = 0
359) than the others because these
sites share more common features.
There are a variety of ways to assess these pairwise

dependencies. One could assess various combina-
tions of marginal, joint, or conditional probabilities or
assess pairwise correlation coefficients. The procedure

Table 2 Pairwise Assessments for the Example

Direct conditional assessments p�j wet � i wet� Implied correlation matrix (	ij )
Marginal

i \ j 1 2 3 4 5 6 �pi � 1 2 3 4 5 6

1 0.59 0.63 0.83 0.39 0.31 0.35 0.147 0.147 0 0�094 0�248
2 0.65 0.83 0.55 0.24 0.49 0.236 0 0�459 0�153
3 0.83 0.42 0.31 0.53 0 0�203 0�359
4 0.33 0.18 0.83 0 0
5 0.26 0.33 0�146
6 0.18

for constructing a joint distribution in the next sec-
tion starts with n marginal probabilities of success
for the n individual wells and n�n− 1�/2 joint prob-
abilities for success at both well i and j . These joint
probabilities were calculated from the marginal and
pairwise conditional probabilities shown in Tables 1
and 2. As discussed by Moskowitz and Sarin (1983),
the use of joint probability tables may help ensure the
consistency of these assessments. Clemen et al. (2000)
compare different methods for assessing dependence
relationships and suggest that it may be easiest and
most reliable to assess pairwise correlation coeffi-
cients. In the original consulting project, the con-
ditional probabilities were assessed one way, but
the implied joint and reverse conditional probabili-
ties and correlation coefficients were also displayed
to ensure that the assessments were consistent and
that the expert understood the implications of the
assessments.
The challenge is to use these pairwise assessments

to construct an appropriate joint distribution and then
determine the optimal drilling strategy.

3. Constructing the Joint Probability
Distribution

We first consider the question of constructing a rea-
sonable joint probability distribution from a set of
marginal and pairwise conditional probability assess-
ments. We chose to use an information-theoretic
method to construct a joint distribution because the
method performs well in a variety of contexts and has
attractive theoretical properties (see, e.g., Jaynes 1982).
We first describe the method for constructing the dis-
tribution and then discuss the results in the context of
our example from §2. We discuss the accuracy of the
approach in §5.
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Method
Let w = �w1
 
 
 
 
wn� be a vector of n binary random
variables where wi = 1 if event i occurs (e.g., the well
is wet) and 0 otherwise. Our goal will be to construct
a joint probability distribution ��w� given informa-
tion about the marginal probabilities for each event
and pairwise joint probabilities. Specifically, we will
assume that we have assessed the n marginal proba-
bilities pi ≡ p�wi = 1) and the n�n−1�/2 pairwise joint
probabilities pij ≡ p�wi = 1
wj = 1�. We will assume
these assessments are consistent in that 0< pi < 1 and
0< pij < pi. Beyond consistency, we make no specific
assumptions about the assessed probabilities.1
 2

We will construct the joint distribution ��w� by
selecting a probability distribution to minimize the
relative entropy or Kullback-Liebler (KL) distance rel-
ative to a reference distribution �0�w� that assumes
independence, subject to the constraint of matching
the specified marginal and pairwise joint assessments.
This KL distance is defined as

D��
�0�≡
∑
w

��w� ln
(
��w�

�0�w�

)
(1)

and the independent reference distribution as

�0�w�≡∏
i

�pi�
wi �1− pi�

1−wi 
 (2)

With �0�w� taken to be the independent reference
distribution, the KL distance D��
�0� is also called
the mutual information among the binary random vari-
ables w with distribution �. Noting that D��
�0�≥ 0
and D��
�0� = 0 if and only if � = �0, we can
interpret the objective function in (1) as a measure
of the strength of dependence in the joint distribu-
tion �. Our joint distributions will thus minimize the

1 To streamline our notation, we will not explicitly list the ranges
for w, the events, or pairwise events in our summations and lists
of constraints. The vector w will range over the 2n possible com-
binations of outcomes of the n events. The marginal probabili-
ties pi and corresponding Lagrange multipliers will range from
i = 1
 
 
 
 
n. Similarly, the pairwise joint probabilities pij and cor-
responding Lagrange multipliers will range over the n�n − 1�/2
unique pairs of events, which may be indexed as i = 1
 
 
 
 
n− 1
and j = i+ 1
 
 
 
 
n.
2 Though it would be valid to have pij = 0 or pij = pi, this would
imply zero probability joint events that cause numerical difficulties
(infinite Lagrange multipliers) for the solution procedures we use
below.

amount of dependence (according to this measure) or
be “maximally uncertain,” subject to the constraint of
matching the specified assessments. In this sense, by
minimizing the KL distance from the independent ref-
erence distribution, we are being conservative in esti-
mating the amount of learning that can take place in
the sequential exploration problem. (For more on KL
distance and mutual information, see, e.g., Cover and
Thomas 1991.)3

To represent the constraints on the joint distribu-
tion, we define the following functions:

�0�w� = 1

�i�w� = wi for all i

�ij �w� = wiwj for all i
 j


and let E��f �w�� denote the expectation of some
function f �w� when w has distribution �. Using
this notation, we can represent the constraint on
marginal probabilities as requiring � to be such that
E���i�w��= pi and the pairwise joint probabilities as
requiring E���ij �w��= pij . The constraint E���0�w��=
1 requires the joint probabilities to sum to 1. We can
then state the primal optimization problem for deter-
mining joint probabilities as

min
�

∑
w

��w� ln
(
��w�

�0�w�

)

 (3)

subject to

E���0�w�� = 1

E���i�w�� = pi for all i

E���ij �w�� = pij for all i
 j


The primal objective function is convex in �, and the
constraints are linear in �. Thus, any locally optimal
solution to (3) is a global optimum.
We can simplify this optimization problem and

learn more about the form of the optimal solution by
considering the Lagrangian dual of this optimization
problem (see, e.g., Luenberger 1989). The use of dual-
ity in information-theoretic analyses is standard (see,
e.g., Jaynes 1968). To formalize this dual approach, let

3 If we had instead taken �0�w�≡ 1, minimizing D��
�0� would be
equivalent to maximizing entropy H���=−∑

w ��w� ln��w�.
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�0, �i, and �ij denote the Lagrange multipliers asso-
ciated with the constraints in (3) and � the vector of
these Lagrange multipliers; the Lagrangian is

L��
��

≡∑
w

��w� ln
(
��w�

�0�w�

)
−�0�E���0�w��− 1�

−∑
i

�i�E���i�w��− pi�−
∑
i
 j

�ij �E���ij �w��− pij �


We can solve the primal KL minimization problem (3)
by solving the dual problem

max
�
min
�

L��
��
 (4)

This dual problem will have a solution whenever the
primal is feasible in that the probabilities specified
as constraints are consistent. Moreover, the optimal
value of the dual objective will equal that of the pri-
mal, and the optimal �∗ will correspond to the dis-
tribution �∗ that solves the primal. If the assessments
are not consistent (i.e., if there is no probability dis-
tribution satisfying the constraints in (3)), the dual
problem (4) will be unbounded.
We can identify the form of the optimal solution �∗

and simplify the dual problem with some additional
analysis. Differentiating L��
�� with respect to � and
setting the result equal to zero, we obtain the form of
the optimal joint distribution as a function of �:

�∗�w
��

=�0�w�exp
(
−1+�0+

∑
i

�i�i�w�+∑
i
j

�ij�ij �w�

)

 (5)

Substituting (5) into (4), the dual optimization prob-
lem (4) becomes

max
�

(
−∑

w

�∗�w
��+�0+
∑
i

�ipi +
∑
i
 j

�ijpij

)

 (6)

One can check that this dual objective function is
concave in � and that the first-order conditions for
optimality of (6) imply that the constraints of (3)
are satisfied. Thus, rather than solving the original
constrained optimization problem (3) involving 2n

unknown joint probabilities and 1+n+n�n−1�/2 con-
straints, we can instead solve the dual problem (6),
which is concave and involves 1 + n + n�n − 1�/2

Lagrange multipliers and has no constraints. In our
example with n = 6, the primal problem (3) has
64 decision variables and 22 constraints; the dual
problem (6) has 22 decision variables and no con-
straints. This dual problem (and larger ones) can be
solved easily using spreadsheet-based optimization
packages. In our example with n= 6 wells, this dual
problem can be solved in one or two seconds using
Solver in Excel. In contrast, Solver failed to reliably
solve the primal formulation of this example.
The optimal distribution �∗�w
�� in (5) has sev-

eral nice properties and interpretations. First, it can be
related to copulas: Because we take the reference prior
�0�w� to be the independent distribution (2), �∗�w
��

can be written as

�∗�w
�� = (Product of marginal distributions)

× (density weighting function)

where the density weighting function (or copula den-
sity) is the exponential term in (5) and encodes the
dependence among the n random variables (see, e.g.,
Clemen and Reilly 1999, Miller and Liu 2002). Our
KL minimization problem can thus be interpreted as
finding the copula that minimizes dependence sub-
ject to the given marginal and pairwise probability
constraints.
Second, the conditional probability distributions

implied by these joint distributions have a nice struc-
ture. Letting w−i denote the vector of outcomes
omitting event i, from (5) we find that the conditional
log-odds for event i can be written as

ln
(

p�wi = 1 �w−i�

1− p�wi = 1 �w−i�

)

= ln
(

pi
1− pi

)
+�i +

∑
j 
=i

�ijwj 
 (7)

That is, the conditional log-odds for one event (e.g.,
finding that well i is wet) is a linear function of the
outcome of the other events. The marginal Lagrange
multipliers �i (which are typically negative) describe
the adjustment to the log-odds in the event that all
other wells fail. The joint Lagrange multipliers �ij

describe the increase in the log-odds of event i due to
the occurrence of event j . Equation (7) has the form
of a logistic regression model (see, e.g., Neter et al.
1996) and, thus, the joint distribution for the wells is
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described by a system of a logistic regression equa-
tions in which the occurrence of event j increases the
log-odds of event i by �ij , and the occurrence of the
event i has a symmetric effect on the log-odds for
event j .
Finally, the Lagrange multipliers can also be inter-

preted in the usual way for constrained optimization
problems as describing how the objective function
changes with changes in the constraint values. Here
the objective function is a measure of the mutual
information among the binary events, and the �i and
�ij describe how changes in the probabilities pi and pij
(holding all marginal and other joint probabilities con-
stant) will change this measure of dependence.4

Example Results
Table 3 shows the Lagrange multipliers associated
with the example described in §2. These results illus-
trate several general features of these KL minimiz-
ing joint distributions. First, recall that in our initial
assessments, the results for well 4 were assumed to be
pairwise independent of the other wells. In Table 3,
we see that the pairwise Lagrange multipliers involv-
ing well 4 are all zero, implying that well 4 is inde-
pendent of all other wells. In general, if some event i
is pairwise conditionally independent of all other
events—that is, if p�wi � wj� = p�wi� for all j 
= i—
then the resulting distribution will have p�wi �w−i�=
p�wi�. This follows from the fact that the optimiza-
tion procedure minimizes mutual information among
the events; if there is nothing in the constraints
that implies that wi and w−i are dependent, then
the mutual information minimizing distributions will
preserve this independence (see Cover and Thomas
1991, p. 27). However, as will be demonstrated below,
pairwise independence between events i and j in the
assessments—that is, if p�wi �wj�= p�wi� for some, but
not all, j—need not imply that �ij = 0 in the optimal
joint distribution.

4 If we had maximized entropy instead of minimizing KL dis-
tance or mutual information (i.e., taking �0�w� = 1 instead of the
independent prior defined by Equation (2)), we would arrive at
the same joint distribution but with the marginal Lagrange mul-
tipliers adjusted to incorporate the marginal probabilities. Specifi-
cally, marginal Lagrange multipliers �i for the entropy formulation
would be �i = ln�pi/�1−pi��+�i. The pairwise Lagrange multipliers
(�ij and �ij ) are the same in the two formulations, and Equation (7)
holds with the marginal log-odds incorporated into �i .

Table 3 Lagrange Multipliers for the Example

Optimal lambdas �
ij )
Marginal

i \ j 1 2 3 4 5 6 �
i �

1 0.45 0.20 0.00 0.03 1.12 −0�57
2 0.64 0.00 2.09 0.18 −1�17
3 0.00 0.46 2.40 −0�84
4 0.00 0.00 0�00
5 0.29 −1�56
6 −2�44


0 1�856

Second, notice that the pairwise Lagrange multipli-
ers are all positive, except for those involving well 4.
Following Equation (7), this implies that the outcomes
of the wells (except well 4) are all positively related,
meaning a wet (dry) result at one well increases the
probability of a wet (dry) result at each of the other
wells. Comparing the pairwise Lagrange multipliers
in Table 3 with the pairwise correlation coefficients in
Table 2, we see that larger multipliers tend to appear
with larger correlation coefficients: The two largest
Lagrange multipliers, �25 = 2
09 and �36 = 2
40, corre-
spond to the two wells with the largest correlation
coefficients, 	25 = 0
459 and 	36 = 0
359. However, the
relationship between these two measures of depen-
dence is not perfect: The rank of the top two are
reversed for the two measures and, considering the
relationships involving well 1, we see that 	12 =
0
147 ≈ 	13 = 0
147, yet �12 = 0
45 > �13 = 0
20. These
differences should not be surprising, because the two
measures of dependence are fundamentally different:
The Lagrange multipliers �ij describe the joint distri-
bution (through Equation (5)) and the probabilities pij
and correlation coefficients 	ij consider the pairwise
relationships.
It is quite possible to have positive correlation

coefficient 	ij and positive association �pij > pi × pj�,
yet have a negative �ij ; Table 4 shows the data for
such an example with three events. In this case, all
three events are positively correlated, but the negative
Lagrange multiplier �13 = −0
37 implies that occur-
rence of event 3 decreases the odds of event 1 (and
vice versa). This negative Lagrange multiplier also
implies that increasing the pairwise probability p13
(or equivalently increasing the correlation 	13�, hold-
ing all other constraints constant, would reduce the
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Table 4 An Example with Positive Correlation and Negative Lagrange Multiplier

Conditional assessments
p�j wet � i dry� Correlation matrix (	ij ) Optimal lambdas (
ij )

Marginal Marginal
i\j 1 2 3 �pi � 1 2 3 1 2 3 �
i �

1 0�75 0�60 0.50 0.50 0.20 2.40 −0�37 −1�012
2 0�75 0.50 0.50 2�40 −2�398
3 0.50 −1�012


0 1�788

overall dependence in the problem as measured by
the KL objective function. If we reduce the condi-
tional assessment p�3 occurs � 1 occurs� from 0.60 to
0.50 (the marginal probability for event 3) so these
two events are pairwise independent, the minimal KL
objective would increase and �13 would be even more
negative ��13 =−13
59�. Thus, pairwise independence
between a pair of events in the assessments need not
(and in general will not) imply conditional indepen-
dence in the optimal joint distribution, and decreasing
the correlation between two events may lead to more
dependence according to the KL measure. Conversely,
�ij = 0 need not imply 	ij = 0.
The calculated Lagrange multipliers also provide a

nice way to check the original assessments. For exam-
ple, if one expected there to be a positive dependence
among the wells and found some negative �ijs, then
this would suggest the need to revisit the original
assessments. Similarly, one might expect two wells
that are near each other to have stronger relationships
and larger �ij than two wells that are farther apart. If
such a relationship does not hold in the optimal dis-
tribution, it again suggests a need to revisit the orig-
inal assessments. Alternatively, after building some
intuition about the relationship between the Lagrange
multipliers and conditional probabilities and/or cor-
relation coefficients, one might assess these Lagrange
multipliers directly or develop a model that relates
them to the distance between the wells or some other
measure of similarity between the wells.
In some cases, one may wish to omit certain

pairwise assessments, perhaps for lack of time or
resources to complete the assessment. This causes no
problems for the KL optimization procedure; the opti-
mal distribution simply assigns a pairwise Lagrange
multiplier �ij = 0 for these omitted assessments. This
approach is conservative in that it minimizes the

amount of mutual information among the variables,
but one would have to consider whether this is
desirable in a given application. If, for example, one
expects a positive relationship among these variables,
one might instead want to set �ij to some default pos-
itive value, perhaps based on a comparison to calcu-
lated �ij for nearby wells.

4. Determining the Optimal
Exploration Strategy

Now suppose we have specified a joint probability
distribution for the well outcomes; how do we deter-
mine the optimal drilling sequence? In this section,
we describe a dynamic programming formulation of
this problem, discuss the results in the context of our
example problem, and then consider a risk-averse ver-
sion of the basic formulation and an extension that
allows synergies between prospects.

Formulation
The structure of the sequential exploration problem is
straightforward: We need to decide which well, if any,
to drill first; if that well is wet (or dry), which well do
we drill next—and so on, through the n stages. A par-
tial decision tree for this problem is shown in Fig-
ure 1. Although conceptually straightforward, these
trees become quite complex even with moderate num-
bers of wells. For example, with n= 6 wells, this leads
to a total of 113,959 scenarios.5 Such a tree is large

5 We define a scenario as an alternative that is considered or a pos-
sibility that must be contemplated when making a decision; this is
the total number of branches in the tree. Equivalently, this is one
less than the total number of nodes in the tree (counting terminal
nodes), because every node lies at the end of a branch except the
initial node. This measure is a reasonable indicator for the amount
of computational effort required to solve the tree and can be fairly
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Figure 1 A Partial Decision Tree for the Sequential Drilling Problem
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but could be handled using a professional decision
tree program like DPL. As indicated in the introduc-
tion, with n = 9 wells the corresponding straightfor-
ward tree would include approximately 460 million
scenarios.
We can simplify this decision tree model if we

recognize that many different early paths lead to
the same state of information and future cash flows.
For example, if we have drilled wells 1 and 3 and
observed well 1 to be dry and well 3 to be wet,
the future (conditional) probabilities and cash flows
are the same regardless of whether we drilled well 3
first or well 1 first. This recombining feature of the
problem is a consequence of Bayesian updating—
posterior distributions do not depend on the order
in which information is received—and does not rely
on the specific properties of the optimal distribu-
tions discussed in §3. For the example with six wells,
there are a total of 36 or 729 different possible well
states (each well may be wet, dry, or undrilled) and
a total of 2,187 possible scenarios to be considered,
compared to 113,959 scenarios in the nonrecombining

compared to recombining trees, which are discussed below. If there
are n wells, we must consider stages i= 0
1
 
 
 
 
n, where the stage
indicates how many wells have already been drilled. In stage i,
there are nCi (n “choose” i) possible combinations of previously
drilled sites; i! different possible orderings of the previously drilled
wells; 2i different outcomes of the i drilled wells; and n − i + 1
possible actions (undrilled sites + the option to quit) in that sce-
nario. The total number of scenarios that must be considered is
thus

∑n
i=0�nCi�i!2i�n− i+ 1�.

tree.6 With n= 9 wells, the recombining tree will have
approximately 79,000 scenarios to evaluate, compared
to approximately 460 million in the nonrecombining
tree. Though the complexity of the recombining tree
grows rapidly with the number of wells, the recom-
bining trees grow much more slowly than their non-
recombining counterparts.
We solve these recombining trees by working back-

ward: We first figure out whether you should drill the
“last” well conditional on the outcome the first n− 1
wells. We then decide which well to drill if we had
two wells remaining. And so on to the initial decision.
To describe the solution procedure more precisely, let
�= ��1
 
 
 
 
�i
 
 
 
 
�n� denote the state where �i = 0
or 1 if the well is dry or wet and equal to �i = “–” if
the well has not been drilled. For example, with n=
6 wells, the initial state is �= �–
–
–
–
–
–�, which
means no wells have been drilled. The vector � =
�0
–
1
–
–
–� represents the state in which well 1
was dry and well 3 was wet and the other wells have
not yet been drilled.
Given the joint probability distribution � over

well outcomes (constructed using the information-
theoretic methods from §3 or any other method), it
is straightforward to calculate the transition probabil-
ities required for the dynamic programming model.
First, let ���� be the total probability associated
with the vector �, constructed by summing ��w�

over the possible scenarios for these unknown events.
For example in the case of n = 6 wells, for � =
�0
–
1
–
–
–�,

����= ∑
w2
w4
w5
w6

��0
w2
1
w4
w5
w6�


where w2, w4, w5, and w6 range over �0
1�; this
summation would involve 24 probabilities. These
probabilities can be easily computed from the joint

6 These scenarios are defined as in the nonrecombining tree. If there
are n wells, we must consider stages i= 0
1
 
 
 
 
n, where the stage
indicates how many wells have already been drilled. In stage i,
there are nCi possible combinations of drilled sites; 2i different out-
comes of the i drilled wells; and n− i+1 possible actions (undrilled
sites+ the option to quit) in each scenario. The total number of sce-
narios considered is thus

∑n
i=0�nCi�2i�n− i+ 1�. Comparing this to

the scenarios in the nonrecombining tree, the difference is that in
the recombining tree we recognize that the i! different orders for
previously drilled wells all lead to the same future prospects.
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distribution �. Though ���� is a probability for
each � (it lies between 0 and 1), � is not a probability
distribution, as

∑
����� exceeds one.

We can use this total probability function to cal-
culate the transition probabilities required for the
dynamic programming model. Suppose that you start
in a state �, where well i hasn’t been drilled (thus
�i = “-”�. If you drill well i, the probability that it is
wet is ���1

i �/����, where �1
i is identical to � except

�i = 1 and the probability that it is dry is ���0
i �/����,

where �0
i is identical to � except �i = 0.

The dynamic programming model can now be for-
malized as follows. Let v��� denote the continuation
value for state �, that is, the expected NPV of future
cash flows given that you start in state �. In this value
calculation, we include the expected future value for
a successful well �si� or a failed well �fi� in the period
the well is drilled and discount cash flows using a dis-
count factor � that corresponds to the time required to
drill the well. As discussed in the example in §2, si is
the discounted expected net present value of produc-
tion, in the period the well is drilled, from a successful
well i (including drilling costs), and fi is the expected
cost of drilling an unsuccessful well i. If all the wells
have been drilled (i.e., � is a vector of zeros and ones),
then v���= 0. For earlier states �, the expected NPV
associated with drilling well i is

vi���= ���1
i �

����
�si + �v��1

i ��+
���0

i �

����
�fi + �v��0

i ��
 (8)

where, as before, �1
i is identical to � except �i = 1 and

�0
i is identical to � except �i = 0. The optimal action

in state � is to drill the well with the largest vi��� or,
if no well has a positive value, to not drill at all.
The optimal continuation value v��� is max�vi���
0�,
where the maximum is taken over all available wells
and not drilling (0). There is no circularity in this def-
inition of the value function because one never visits
the same state twice; each time you drill a well, its
state changes to either wet or dry.

Example Results
We can illustrate this procedure by considering the
results in our example involving six wells. We assume
a discount rate of 1% per period corresponding to a
discount factor of � = 1/�1+ 0
01� = 0
99. Given that
these deep-water wells take about six weeks to drill,

this corresponds to an annual discount rate of approx-
imately 9%. Our spreadsheet version of the dynamic
programming model begins with the joint probability
distribution ��w� and calculates the total probabili-
ties ���� by a matrix multiplication, where the matrix
indicates which of the 26 states w are included in each
of 36 or 729 total probability states �. Given these
total probabilities, the solution of the dynamic pro-
gram requires calculating 1,458 equations of the form
of Equation (8) (there are six actions and 36 or 729 pos-
sible well states, but two-thirds of these state-action
pairs correspond to scenarios where the well has
already been drilled) and then calculating 729 max-
imums of seven values. Despite the relatively large
numbers of calculations involved, the calculations are
all simple: Given a joint probability distribution, the
total probabilities and solution of the dynamic pro-
gram are determined almost instantaneously in Excel.
The resulting optimal strategy is summarized in

Figure 2 and calls for drilling well 3 first, yielding
an expected value of $14.40 million. If well 3 is dry,
you quit without drilling any more wells. If well 3
is wet, you drill well 6 next and the optimal contin-
uation value is $28.50 million. If well 6 is wet, you

Figure 2 The Optimal Drilling Strategy for the Example
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drill well 1 and then well 2, regardless of how well
1 turns out. If well 2 is wet, you then drill well 5. If
well 6 is dry, you then drill well 2. If well 2 is dry,
you quit, and if well 2 is wet, you continue to well 5.
If 6 is dry but wells 2 and 5 are both wet, you then
come back to drill well 1. You never drill well 4. As
discussed in §2, if you had to drill using a nonflexible
strategy (either drilling simultaneously or in a fixed
schedule), you would prefer not to drill any of the
wells. The optimal flexible drilling program thus adds
$14.40 million to the expected value. Following the
optimal strategy, you are sure to drill one well, and
there is a 23% chance that you would drill 5 wells,
despite the fact that none of these wells is economi-
cally viable in isolation.
The optimal strategy for this example confounds

most simple rules for recommending a drilling order.
For example, we do not drill the well with the high-
est probability of success first; that rule would sug-
gest drilling well 4 first, which we do not drill at all.
Similarly, we do not drill the cheapest well first; that
rule would suggest drilling wells 2, 5, or 6 first, all
of which have the same minimal drilling costs. We
do not drill the well with the smallest expected loss
��1− pi�× fi�; that rule would suggest well 4 again.
Nor do we drill the well with the largest intrinsic
value; that rule would suggest drilling well 5 first.
Finally, we do not drill the potentially largest well,
6, first. Smith and Thompson (2004) show that, given
a “common-risk structure” and “in-the-money” wells,
it is optimal to first drill the well with the largest
intrinsic value if it also has the largest probability of
success. These assumptions do not hold in this exam-
ple, because the well with the largest probability of
success, well 4, does not have the largest or a posi-
tive intrinsic value. We could, however, increase the
value given success �s4� from $5 million to $10 million,
thereby increasing its intrinsic value to $1.5 million,
giving it the highest intrinsic value and the largest
probability of success; though we would now drill
well 4, we still would not drill it first.
Why is the strategy of Figure 2 optimal? First, you

don’t drill well 4 because it has a negative intrin-
sic value and its result is probabilistically indepen-
dent of the other wells; the information provided by
the other well results does not affect its values or
probabilities and hence cannot change this marginal

decision. In addition, well 4 provides no information
regarding other wells. If well 4 had a positive intrinsic
value, you would drill the well regardless of how the
other wells turn out; however, its place in the opti-
mal drilling sequence will vary depending on how
the other wells turn out. For example, if we increase
well 4’s value given success �s4� from $5 to $10 mil-
lion, the intrinsic value of well 4 is positive and it
is optimal to drill well 4 somewhere from period 2
to 6, with the sequence and timing depending on how
the others turn out. If we increase s4 beyond $15.25
million (corresponding to an intrinsic value of $5.86
million), then it becomes optimal to drill well 4 first.
The preference for the timing of well 4 is driven by
discounting: If we didn’t discount the cash flows, it
wouldn’t matter when you drill well 4.
Why drill well 3 first? To understand the struc-

ture of the optimal policy, it helps to examine the
expected NPVs for alternative initial well choices as
shown in Table 5: These NPVs assume that an opti-
mal drilling strategy is followed after the first well.
(These are the vi��� given by Equation (8) for the
initial state �= �–
–
–
–
–
–� and are automatically
calculated when solving the dynamic program.) In
Table 5, we see that drilling well 3 first is slightly
better (expected NPV = $14
40 million) than drilling
well 2 first (expected NPV = $14
34 million). If we
were to drill well 2 first, then it would be optimal to
quit if well 2 is dry and to drill well 5 next if well 2
is wet. If we were instead to drill one of the other
wells (1, 5, or 6) first, we would have a substantially
lower expected NPV. Comparing wells 3 and 2 to the
other wells, we see that these wells both have rela-
tively high marginal probabilities of success (0.53 and
0.49, respectively) and strong links to other wells. In
Table 3, we see that well 3 is strongly linked to well 6,
as indicated by the Lagrange multiplier value of �36 =
2
40. Well 2 is strongly linked to well 5 with �25 = 2
09.
These strong links help explain why there is consider-
able value associated with the information provided

Table 5 Expected NPVs for Alternative Initial Drilling Decisions

Well

Quit 1 2 3 4 5 6

Expected NPV 0 10.88 14.34 14.40 11.61 11.44 10.64
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by the early well results and why it is optimal to drill
well 6 next if well 3 is successful and well 5 next if
well 2 is successful.
The structure of this solution suggests that there

are no simple general rules for determining the opti-
mal drilling order. A simple rule would evaluate some
index based on individual well data and prioritize
wells based on that index. A classic example of such
an index is the Gittins index (see, e.g., Ross 1983)
that can be used to prioritize individual projects in
the independent setting. In the dependent setting, one
such simple index might be the intrinsic value of the
well, which would change over time as the proba-
bilities of success are updated. As discussed earlier,
Smith and Thompson (2004) show that the order-
ing given by this index is optimal given particular
assumptions. However, such rules cannot work with
general dependence structures. For instance, in our
example, if we increase the value given success for
well 5 �s5� from $40 million to $41 million, it becomes
optimal to drill well 2 first rather than well 3. Thus
changing one well’s parameters may change the rel-
ative ordering of other wells! Intuitively this makes
sense: Given the tight link between wells 2 and 5 and
between wells 3 and 6, it is as if the pair of wells 2
and 5 is competing against the pair of wells 3 and 6
to go first. Improving well 5 improves the 2–5 pair
and moves well 2 to the front of the drilling order,
with well 5 following if successful. These pairs are
not independent, however: If you drill well 3 first (or
well 2 first) and fail, it is optimal to quit entirely rather
than explore the other pair. Examples like this seem
entirely reasonable and appear to preclude the pos-
sibility of using simple index rules for determining
optimal policies; the optimal policies depend critically
on the dependence among wells in addition to the
parameters for the individual wells.

Risk-Averse Formulation
If we assume that the decision maker has an exponen-
tial utility function for the NPV of the cash flows gen-
erated by the exploration opportunity, we can capture
risk aversion by recasting the dynamic programming
recursion in terms of certainty equivalents rather
than expected values. Specifically, suppose the deci-
sion maker’s utility function is u�x� = −exp�−x/R�,
where x is the NPV and R is the decision maker’s

risk tolerance. With this utility function, the cer-
tainty equivalent of a gamble x̃ is given by CE�x̃� =
−R ln�E�exp�−x̃/R���. The recursive calculation of cer-
tainty equivalents exploits the “delta property” of the
exponential utility function: If we add a constant "
to all outcomes of a gamble x̃, its certainty equiva-
lent increases by "; that is, CE�x̃ + "� = CE�x̃� + ".
This property allows us to add the rewards (si and fi)
to the continuation values as we did in risk-neutral
recursion, given in Equation (8).
Let v′��� be the continuation certainty equivalent

for state �; that is, the decision maker’s certainty
equivalent for the exploration opportunity starting in
state �. Like the expected values v��� defined in
Equation (8), these are stated in then-current values
and are discounted through the recursion formula.
The dynamic programming recursion can be defined
in terms of certainty equivalents as follows. If all the
wells have been drilled (i.e., � is a vector of zeros and
ones), then v′��� = 0, as before. For earlier states �,
the certainty equivalent for drilling well i is

v′
i���=−	��� ln

(
���1

i �

����
exp

(
− si + �v′��1

i �

	���

)

+ ���0
i �

����
exp

(
−fi + �v′��0

i �

	���

))

 (9)

Here, as before, �1
i is identical to � except �i = 1 and

�0
i is identical to � except �i = 0. The risk tolerances

	��� in these certainty equivalent calculations are a
function of � and are inflated to reflect discounting:
If the risk tolerance for current (period 0) dollars is R
(as assumed above), then the corresponding risk tol-
erance for period t dollars must be inflated to 	���=
R× �−t , where t is the period this well is drilled; in
this model, the period is simply the number of pre-
viously drilled wells in state �.7 As before, the opti-
mal action in state � is to drill the prospect with the
largest v′

i��� or, if no well has a positive value, not to
drill at all. The optimal continuation certainty equiv-
alent v′

i��� is max�v′
i���
0�, where the maximum is

taken over all available wells and not drilling (0).
Applying this risk-averse procedure in our exam-

ple problem, we find that for risk tolerances below

7 Rather than inflating risk tolerances, we could calculate the same
present (period 0) certainty equivalents and optimal policies by dis-
counting the cash flows before applying the dynamic programming
procedure and taking �= 1 and 	���=R in Equation (9).
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$92 million, it is optimal to not drill at all. For risk
tolerances between $92 million and $7.571 billion, it
is optimal to drill well 2 first, followed by well 5 if
well 2 is successful, with later elements of the policy
changing slightly over this range. With risk toler-
ances greater than $7.571 billion, the optimal policy
is identical to the risk-neutral case. Comparing the
data for the wells in Table 1, we see that wells 2
and 5 have larger probabilities of success and lower
costs given failure than wells 3 and 6, but lower val-
ues given success. Given that the expected values for
these two strategies are close ($14.40 million vs. $14.34
million; see Table 5), a relatively modest degree of risk
aversion—a risk tolerance less than $7.57 billion—
leads to adopting a less risky strategy that begins with
drilling well 2.

Synergies Among Prospects
Finally, we note that we can easily incorporate syn-
ergies between prospects, such as cost reductions
resulting from transportation and production facili-
ties that could be used to support multiple wells. In
our description of the dynamic programming model,
we have assumed that the rewards for a single well
(si and fi) are independent of the results for the other
wells. Synergies can be easily accommodated in this
framework by allowing the rewards to depend on
the outcomes of other wells and considering non-
constant reward functions si��� and fi��� in Equa-
tions (8) or (9). For example, if we would not build
the production and transportation until all wells have
been drilled, we can take the rewards associated with
a successful well si��� to be zero, except for those
scenarios when five wells have already been drilled.
Alternatively, we could accomplish the same thing by
taking all the rewards to be zero and taking the ter-
minal value v��� to represent the value of the port-
folio of wells in the case where all wells have been
drilled (i.e., � is a vector of zeros and ones) rather
than assuming v��� = 0 in this case. This extension
does not complicate the dynamic programming solu-
tion procedure.

5. Accuracy of the Distribution
Approximation

It is natural to ask how well our KL-minimization
approach approximates the “true” distributions that

are likely to be encountered in practice. In think-
ing about the accuracy of this approach, it is impor-
tant to remember that in practice, as in our example,
the true distribution will typically never be known.
Indeed, the purpose of the process is to construct a
reasonable joint distribution from a limited number
of assessments: If the true distribution were known,
we could simply use it. Nevertheless, we would like
to have some assurance that the joint distributions
that we construct are reasonable and that the method
provides good approximations across the range of
joint distributions that might arise in practice. In this
section, we will present results of some preliminary
tests of accuracy using the simulation procedure pro-
posed by Keefer (2004) to generate joint probability
distributions that have positive pairwise correlations;
this simulation algorithm is described in detail in the
appendix. Abbas (2006) also uses simulation to evalu-
ate the accuracy of maximum entropy approximations
based on marginal and pairwise (also three-way) con-
straints but does not consider dynamic decision prob-
lems like the one considered here. We use Keefer’s
simulation procedure because it is designed to gener-
ate joint distributions that are realistic for positively
related exploration prospects.
To provide a benchmark for evaluating the accuracy

of the KL approximation, we will compare the results
of the KL approximation to those given by an inde-
pendent approximation that starts with marginal prob-
abilities for each event and assumes that the events
are independent. Although such an approach will
not capture learning, in practice dependence is often
overlooked or not captured, and it is important to
understand the nature and magnitude of the errors
introduced by neglecting it. In our six-well example,
described in §2, the intrinsic value of each well is neg-
ative, and therefore, the independent approximation
would suggest that we do not drill any wells and
yields a value of $0, compared to the $14.40 million
given by the KL approximation.
An alternative model that is simpler than the KL

approximation but captures some degree of depen-
dence is Keefer’s (2004) underlying event (UE) approx-
imation. The UE approximation posits the existence
of a hypothetical UE that must occur in order for any
wells to be wet and such that, given the occurrence
of the underlying event, all the wells are indepen-
dent. Keefer calibrates this model by assessing the
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marginal probabilities of success for all events and
assessing one conditional probability. Given the struc-
tural assumption of the UE model, this is sufficient
to fully determine the joint distribution (see Keefer
2004 for details). This simplifying structural assump-
tion has some strong consequences for learning: As
Keefer notes, once one well is wet, you know that
this UE has occurred and the remaining wells are
probabilistically independent. In this scenario, learn-
ing stops and the optimal drilling strategies call for
drilling the same set of wells regardless of how the
remaining wells turn out. In general, the UE approxi-
mation may overestimate or underestimate the value
in a sequential exploration problem. In our six-well
example, the UE approximation suggests not drilling
at all and therefore suggests a zero value.
In our simulations, we will focus on cases with six

wells and will consider three measures of the accu-
racy of these approximations of the joint distribution:
(i) the mean absolute difference between the approx-
imate and true joint probabilities, (ii) the maximum
absolute difference in these joint probabilities, and
(iii) the KL distance from the true distribution to the
approximation. The KL distance is given by Equa-
tion (1) but with the true distribution in place of the
reference prior �0���. These error measures are all
such that a value of zero indicates no error and larger
values indicate larger errors. Measures (i) and (ii)
were used in Keefer’s analysis; Abbas considers (i),
(ii), and (iii).
In addition to these probability-based measures of

accuracy, we will consider two economic measures
in the sequential exploration setting: (iv) the absolute
value of the difference between the optimal expected
value given by the true probabilities and the optimal
expected value given by the approximate probabili-
ties and (v) the difference between the expected value
given by following the true optimal policy and the
expected value by following the approximate optimal
policy, with both expected values calculated using the
true joint probabilities: We refer to this as the expected
value lost. The error in the value estimate (mea-
sure iv) is an appropriate error measure if the analysis
is intended to estimate the value of the exploration
opportunity, for example, if contemplating selling or
acquiring the exploration opportunity. The expected

value lost (measure v) indicates how close you come
to identifying the optimal exploration strategy.
In each step of our simulation, we randomly gener-

ate a true joint probability distribution using Keefer’s
procedure. We then use this true joint distribution
to calculate the marginal and pairwise conditional or
joint probabilities required for each of the approxi-
mations and construct the corresponding approximate
joint distributions. Next, we solve the dynamic pro-
gramming model of §4 for the true joint probabil-
ity distribution and for each of the approximations.
Finally, we calculate and record the five different
error measures described above. Although we ran-
domly generate the joint probability distribution, in
our study, we always use the expected values of suc-
cess and failure (si and fi) assumed in Table 1.
The results of a simulation involving 5,000 trials are

shown in Table 6. The rows in the table correspond to
the different measures of accuracy and the columns to
the different approximations. For each error measure,
we report the mean error, the standard deviation,
and the fraction of times the simpler method outper-
formed the KL approximation. To place these numer-
ical results in context, the average joint probability in
these models must always be 1/26 = 0
0156. The true

Table 6 Simulation Results

Approximation
Independent UE KL

i. Mean absolute difference
Mean 0�0148 0�0095 0�0017
Std dev 0�0037 0�0026 0�0007
Fraction< KL (%) 0�00 0�00 —

ii. Max absolute difference
Mean 0�2471 0�1326 0�0115
Std dev 0�0720 0�0568 0�0060
Fraction< KL (%) 0�00 0�06 —

iii. KL distance from true distribution
Mean 0�913 0�444 0�026
Std dev 0�443 0�208 0�016
Fraction< KL (%) 0�00 0�00 —

iv. Absolute error in value estimate ($ million)
Mean 15�25 6�39 0�31
Std dev 8�89 4�77 0�29
Fraction< KL (%) 0�24 2�08 —

v. Lost value from approximate policy ($ million)
Mean 15�25 5�57 0�13
Std dev 8�89 3�66 0�20
Fraction< KL (%) 0�06 0�50 —
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values for the sequential exploration opportunities in
the simulations averaged $82.8 million, with a stan-
dard deviation of $51.4 million; approximately 3% of
these randomly generated distributions lead to a truly
optimal value of zero.
Examining these results, we see that on all mea-

sures the mean errors for the KL approximation
are much smaller than the corresponding errors for
the other methods, typically by an order of magni-
tude. Moreover, examining the Fraction<KL results,
we see there are very few cases where the simpler
approximations outperform the KL approximation on
any of these measures. The best Fraction < KL is
the UE approximation’s performance on the absolute
value of the error in value estimates (measure iv),
where the UE model approximation outperforms the
KL approximation in 2% of the cases. However, even
in these cases, the superior performance of the UE
approximation is usually illusory: Though the UE
value estimate may sometimes be closer to the true
value (it is sometimes high and sometimes low), in
only 0.50% of the cases considered does the policy
suggested by the UE approximation actually perform
better than that suggested by the KL approximation
when evaluated by the true probabilities. In these
scenarios, the difference in expected values averages
only 0.15. Thus, in the very few cases where the UE
approximation truly outperforms the KL approxima-
tion, the two are typically quite close.
Of course, it should not be too surprising that the

KL approximation outperforms these other approx-
imations; it requires substantially more information
than these other methods. The results do show that
the errors associated with the independent approx-
imation—that is, assessing the n marginal probabil-
ities (six probabilities in the example) and ignoring
the dependence—can be substantial, with the aver-
age error in value estimate and value lost (these
two measures are always equal for the independent
approximation) being $15.25 million, that is, 18.42%
of the average true value of $82.8 million. The UE
model requires more information than the indepen-
dent model (n marginals and one conditional prob-
ability; a total of seven probabilities in the example)
and performance improves, but the errors are still
fairly substantial, the average errors in value estimate
and value lost being 7.71% and 6.73% of the average

true value. The KL approximation requires nmarginal
and �n−1�n/2 pairwise conditional or joint probabili-
ties (a total of 21 probabilities in the example) but puts
this additional information to good use. Overall, the
KL approximation performs quite well in these sim-
ulations: a mean error of 0.31 and mean value lost of
0.13, only 0.37% and 0.16% of the average true value.
Although we find these results quite reassuring, this
is a preliminary analysis of accuracy; a more com-
plete analysis of the accuracy of these approximations
would consider alternative value assumptions, differ-
ent numbers of wells, alternative methods for gener-
ating true distributions, and the impact of errors in
the assessments.

6. Discussion and Conclusion
The modeling tools developed in §§3 and 4 work
well together, but each could be used independently
of the other and in other contexts. For example, one
could use this information-theoretic approach for gen-
erating joint probability distributions for a simulation
model. Similarly, one could use the dynamic program-
ming model with joint distributions generated some
other way. For example, in the motivating consult-
ing application, rather than assessing probabilities for
“wet” and “dry” (hydrocarbons present or absent) for
each well directly, the experts actually specified prob-
abilities for the necessary conditions for hydrocarbons
to be present: The hydrocarbons must have formed;
the rocks must be porous enough to allow the hydro-
carbons to flow into the well; the geologic formation
must be of the appropriate shape, and the geologic
formation must have a seal to trap the hydrocarbons.
All four of these factors must be present for a well to
be “wet.” These factors were considered to be inde-
pendent at each site, but the individual factors were
dependent across sites. The experts assessed pairwise
probabilities (as in §2) for each of these underlying
factors, and the information-theory-based approach
of §3 was used to construct a joint probability distri-
bution for each factor. The joint distribution for the
wells being wet or dry was then calculated from these
joint distributions for the underlying factors.
Although this paper was motivated by a particular

oil and gas example, the probability model devel-
oped here could be applied in other oil and gas appli-
cations, as well as in other contexts. For example,
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rather than consider multiple wells, one might con-
sider dependence among results for different targets
or formations reached from a single well. In pharma-
ceutical R&D, one might use the probability model
of §3 to capture dependence in the safety or efficacy
of similar compounds. Alternatively, one might be
interested in modeling dependence of default risks in
a set of bilateral contracts with different counterpar-
ties. Moreover, though we have focused on the case
where the events are binary (e.g., the well is either
wet or dry), the information-theory-based procedure
for determining joint probabilities can be general-
ized to problems with additional outcomes or addi-
tional uncertainties (e.g., learning about volumes or
oil quality).
The dynamic programming model can also be ex-

tended in many ways. For example, we might con-
sider the possibility of exploring in parallel as well as
in sequence. The sequential approach maximizes the
information available when you examine prospects,
but this comes at the expense of delaying the poten-
tial benefits of a successful well. In an R&D con-
text where the individual projects or compounds take
longer to evaluate, parallel exploration strategies may
be particularly attractive. The model of §4 can eas-
ily be extended to handle this: The state space would
still consist of the same 3n possible combinations of
wet, dry, or unknown wells, but, if we are going to
evaluate the possibility of drilling up to two wells in
each period, we would need to consider up to n2+n

actions,8 rather than the maximum of n + 1 actions
in the current formulation. It is also straightforward
to extend the model to consider the case where there
is a bound on the total number of wells that can
be drilled. We could also expand the state space to
consider additional outcomes or uncertainties beyond
the individual well outcomes. For example, in the oil
exploration context we might consider the oil price
or the “day rate” for the drilling rigs as an addi-
tional uncertainty that may affect values and drilling
decisions. A more complex extension would consider
dependence between the values given success (the si�
as well as the success events themselves. The size of

8 This is �n+ 1� choices for the first well (n wells plus not drilling)
times n choices for a second well (n−1 other wells plus not drilling
a second well).

this state space in this case would be such that we
would probably have to use approximate dynamic
programming methods (e.g., Bertsekas and Tsitsiklis
1996) to solve these problems rather than the exact
methods used here.
Though several generalizations are possible, our

model illustrates both the challenges and rewards
of dynamic decision modeling. The key challenges
are constructing an appropriate yet tractable model
that describes the uncertain “learning” over time and
building a decision model that can efficiently contem-
plate the many scenarios and options that arise. Here
we used information-theoretic methods to construct a
joint probability distribution that captures the learn-
ing from drilling wells sequentially. We then used
dynamic programming techniques to take advantage
of the recombining structure of the problem and to
keep the decision model reasonably tractable. These
general techniques can be applied in many dynamic
decision problems. The benefit of the dynamic mod-
eling is apparent in our example: By being smart in
choosing which wells to drill when, we were able to
turn a collection of six individually unattractive wells
into a promising exploration play. Here and in gen-
eral, the optimal strategies are quite sensitive to the
dependence in the learning model and are difficult to
evaluate without the aid of a dynamic decision model.

An online supplement to this paper is available on
the Decision Analysis website (http://da.pubs.informs.
org/online-supp.html).

Acknowledgments
The authors thank three anonymous referees and editor
Don Kleinmuntz for helpful comments and suggestions.
Eric Bickel thanks Jennifer Meyer of Strategic Decisions for
encouraging this research; she was the project manager for
the consulting engagement that motivated this work. Eric
also thanks David Lowell and Ali Abbas for helpful con-
versations about using maximum entropy methods in the
original consulting application.

Appendix: Keefer’s Procedure for Generating
Joint Distributions
In §5 we use Keefer’s (2004) procedure for generating prob-
ability distributions wells that exhibit positive pairwise
dependence among binary variables. The procedure gener-
ates conditional probabilities for wells 1–6 in order. In each
simulation:
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1. We generate a probability of success for well 1,
p�w1 = 1�, by drawing a random number from a uniform
distribution on �0
1�.
2. We use a two-stage process to generate conditional

probabilities for well 2: We first generate a random p from
the uniform on �0
1� and then generate p�w2 = 1 � w1 = 0�
by uniform sampling from �0
 p� and generate p�w2 = 1 �
w1 = 1� by drawing a random number from �p
1�.
3. We also use a two-stage process for well 3: We gener-

ate two uniform random numbers, labeling the smaller one
p1 and the larger one p2. We then assign p�w3 = 1 �w2 = 0

w1 = 0� a random number drawn from �0
 p1�, p�w3 = 1 �
w2 = 0
w1 = 1� and p�w3 = 1 �w2 = 1
w1 = 0� random num-
bers drawn from �p1
 p2�, and p�w3 = 1 � w2 = 1
w1 = 1) a
random number drawn from �p2
1�.
4. For wells 4–6, we generate conditional probabilities

by sampling from a beta distribution and then sorting the
probabilities so that more successes at early wells leads to a
higher probability of success for the present well. The beta
distribution’s parameters $ and % were determined by ran-
domly drawing its mode, given by �$−1�/�$+%−2�, from
a uniform distribution. The values of $+ % were taken to
be 2.1, 2.5, and 2.9 for wells 4–6.
Keefer chose these particular distributions and parame-

ters so that the pairwise correlations would average close
to 0.5. Our simulation is implemented in Excel and repli-
cates Keefer’s results for the pairwise correlations as well
as the error results for the independent and UE approxima-
tions for the two error measures (i and ii in Table 5) that we
have in common.
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