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Strictly proper scoring rules continue to play an important role in probability assessment. Although manysuch rules have been developed, relatively little guidance exists as to which rule is the most appropriate.
In this paper, we discuss two important properties of quadratic, spherical, and logarithmic scoring rules. From
an ex post perspective, we compare their rank order properties and conclude that both quadratic and spher-
ical scoring perform poorly in this regard, relative to logarithmic. Second, from an ex ante perspective, we
demonstrate that in many situations, logarithmic scoring is the method least affected by a nonlinear utility func-
tion. These results suggest that logarithmic scoring is superior when rank order results are important and/or
when the assessor has a nonlinear utility function. In addition to these results, and perhaps more important,
we demonstrate that nonlinear utility induces relatively little deviation from the optimal assessment under an
assumption of risk neutrality. These results provide both comfort and guidance to those who would like to use
scoring rules as part of the assessment process.
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1. Introduction
Consider the assessment of a probability distribu-
tion by an individual A, the assessor, over n mutu-
ally exclusive and collectively exhaustive statements,
where n > 1. Let p = �p1� � � � � pn� be an n-vector of
probabilities representing A’s private beliefs, where pi

is the probability A assigns that statement i is true or
will occur, and the sum of these probabilities is equal
to 1. Let A’s public assessment or response be given
by r = �r1� � � � � rn�, where ri is the stated probability
that statement i is correct, and the sum of these prob-
abilities is equal to 1.
If A is rewarded or scored according to some func-

tion R, then A’s expected score when he or she
assigns r and believes p is �R�r � p� = EpRi�r�� =∑

i piRi�r�, where E is the expectation operator and
Ri is the score received for assigning r when state-
ment i is correct. A strictly proper scoring rule T is
a scoring function such that A strictly maximizes his
or her expected score by setting r = r∗ = p; that is,
�T �p � p� > �T �r � p� for all r �= p and �T �p � p�= �T �r∗ � p�
when r∗ = p (Toda 1963, Roby 1965, Shuford et al.

1966, Winkler 1968). Many scoring rules have been
developed. Three of the most popular are

Quadratic (Q)� Qi�r�= 2ri − r · r ∈ −1�1� (1)

Spherical (S)� Si�r�= ri/�r · r�1/2 ∈ 0�1� (2)

Logarithmic (L)� Li�r�= ln�ri� ∈ �−
�0�� (3)

where, again, the subscript i signifies that this is the
score obtained by assigning r when statement i is
correct.
In some cases it is convenient to scale or normal-

ize the scoring rules. Toda (1963) proved that a lin-
ear transformation of a strictly proper scoring rule is
also strictly proper. For example, the Brier score (Brier
1950), which is popular in meteorological contexts, is
Bi�r�= 1−Qi�r�.
Given the variety of scoring rules, the question

naturally arises as to which scoring rule should be
used. Scoring rules have ex ante and ex post prop-
erties (Winkler 1996). Ex ante properties are related
to the scoring rule’s ability to encourage r∗ = p,
while ex post properties are concerned with the
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scoring rule’s usefulness in evaluating assessment
performance.
Shuford et al. (1966) proved that logarithmic is the

only proper scoring rule the value of which depends
only on the probability assigned to the correct state-
ment, when there are more than two statements. This
is referred to as the local property and has two impor-
tant implications. First, such a rule should be easier
for individuals to understand. For example, a two-
dimensional chart can be provided that details the
score for any set of n assignments, which is only pos-
sible for other rules in special circumstances (e.g., A
assigns ri to the correct answer and �1− ri��n−1�−1 to
each of the remaining statements). Second, and per-
haps more important if one is using the output of
a scoring rule to evaluate the ability of the assessor,
logarithmic is the only scoring rule consistent with
the likelihood principle or the use of Bayes factors to
update the weights assigned to different experts or
forecasting systems (Winkler 1969, 1996).
However, Friedman (1979, 1983) argued that not

only should scoring rules induce honest assessments,
but they should encourage r to be close to p in terms
of a distance metric, a property Friedman terms effec-
tive. Friedman proves that both quadratic and spher-
ical are effective and conjectures that logarithmic is
not effective for any metric. Nau (1985) countered
that effectiveness only adds a transitivity property
among probability distributions, which is difficult to
justify. Selten (1998) defined the expected score loss
by assigning r instead of p to be �T −�r � p�= �T �p � p�−
�T �r � p� and introduces an additional property he calls
neutrality, which requires that the expected score loss
satisfy the symmetry property of a distance measure
such that �T −�p � r�= �T −�r � p�. Selten proved that Q is
the only scoring rule that satisfies neutrality.1 Earlier,
Savage (1971) had shown that Q is the only rule scor-
ing rule with a symmetric loss function in the case of
a simple dichotomy.
Because L is local, it will always assign a higher

score to higher assignments on the correct statement.

1 Though not specifically discussed by Selten, L does not satisfy
neutrality because the expected score loss in this case is equal to the
Kullback-Leibler distance between r and p. It is well known that
KL is not a true distance measure because it is not symmetric and
does not satisfy the triangle inequality (Cover and Thomas 1991).

Q and S do not share this property when there are
more than two statements. One implication of this fea-
ture is that one assessor may assign a higher (lower)
probability than another assessor to the correct state-
ment but receive a lower (higher) score. Whether this is
a concern depends on the context. In academic testing
situations, for example, students are likely to perceive
such a result as being unfair. Another implication of
nonlocality is that, when there are more than two
statements, different scoring rules may generate dif-
ferent rank orderings among assessors for the same
set of assessments.
A few authors have studied the rank order prop-

erties of the scoring rules. In an assessment study
involving American football, Winkler (1971) reported
that all three scoring rules yielded similar rankings
when averaged over several assessment tasks. Staël
von Holstein (1970) performed two different assess-
ment experiments, with between 5 and 9 statements,
and reported that Q, S, and L produced similar rank-
ings when considering average scores. However, close
inspection of his results shows that some individuals’
rank changed by up to 50% by being scored with Q
or S instead of L.
The proper scoring rules discussed above assume

that A’s objective is to maximize his or her expected
score, which implicitly assumes the utility function is
linear in his or her score. If this is not the case, it
may no longer be optimal to set r∗ = p. If A’s utility
function u is known and has an inverse u−1, then u−1 �
T is a proper scoring rule under u (Winkler 1969).
The difficulty in practice is that neither the func-

tional form nor the parameters of u may be known.
This suggests that we should study the effect of non-
linear utility functions on r∗ under Q, S, and L scor-
ing. Perhaps under certain circumstances this impact
is “small.” Winkler and Murphy (1970) illustrated the
effect of quadratic and exponential utility under Q
scoring with two statements and found that a risk-
preferring individual moves closer to deterministic
assessments (i.e., closer to 0 or 1), and a risk-averse
individual hedges his or her assessments closer to
uniform. Murphy and Winkler (1971) calculated the
optimal adjustment under quadratic utility and Q
scoring when n= 2 and p1 = 0�9 and found p1 − r∗1 =
0�2593, which is a significant deviation from the risk-
neutral solution.
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In this paper, we investigate two properties of scor-
ing rules, one ex post and one ex ante, which we
believe are important in certain situations. First, we
analytically compare the ex post rank order properties
of Q, S, and L, which provides context for consider-
ing the empirical studies discussed above. Our results
demonstrate that the rank order differences among Q,
S, and L can be significant. Second, we quantify the ex
ante impact of nonlinear utility functions under many
different conditions. We study the absolute impact
on r∗ as well as the relative performance of Q, S,
and L. This analysis yields two important findings:
(1) In many situations, the deviation from the risk-
neutral solution is minor, and (2) L is the least affected
by nonlinear utility, under an assumption of exponen-
tial utility.
The remainder of this paper is organized as follows.

Section 2 discusses the normalization of the scoring
rules so that we can properly compare them. Section 3
investigates the rank order properties of the scoring
rules. Section 4 analyzes the performance of Q, S, and
L under nonlinear utility. Finally, §5 concludes.

2. Normalization
To compare the scoring rules, which have different
ranges, we must normalize them in some cases. For
example, the optimal response for different scoring
rules under an assumption of nonlinear utility will
depend on the range of possible scoring outcomes
and hence the normalization scheme. Unfortunately,
normalizing the rules is not straightforward, because
L is unbounded below. We adopt the perspective of
an analyst who is considering the use of Q, S, or L
scoring for a particular assessment task and suggest
a normalization scheme defined over the range pi ∈
�0�1� that we believe is both natural and reasonable.
We will use the script characters � , �, � , and � to
denote the normalized rules and the nonscript char-
acters T, Q, S, and L to denote the core scoring rule.
We will refer to the normalized rules only in those
cases where the results depend on the normalization
scheme.
Two normalization approaches are possible: ex ante

or ex post. An ex ante normalization ensures that
the pairs �r��p�� and �r��p�� yield expected scores
of � and �, respectively, such that �� �r� � p�� = a +
b�T �r� � p�� = � and �� �r� � p�� = a + b�T �r� � p�� = �

(Murphy and Winkler 1970). An ex post normaliza-
tion ensures that an assignment of r� yields a score of
� when statement j is correct, and assignment of r�
yields a score of � when statement k is correct, not-
ing that j may equal k. For example, consider a state-
ment with three possible answers: (j , k, l�. We may
wish to award the assessor a score of � if he or she
assigns �0�1�0�8�0�1� and statement j is correct and
a score of � when he or she assigns �0�4�0�5�0�1�
and statement k is correct. Formally, we are free to
choose a and b such that �j �r��= a+ bTj�r��= � and
�k�r�� = a + bTk�r�� = �. We focus on ex post nor-
malization because we believe it enables assessors
to better understand the implications of their assign-
ments because a given score is a function only of the
response. The ex post normalization factors a� and b�
for the scoring rule T are

a� = �Tk�r��−�Tj�r��

Tk�r��− Tj�r��
(4)

b� = �−�

Tk�r��− Tj�r��
(5)

(see appendix). As can be seen from Equation (5), the
ratio between bs for any two scoring rules is indepen-
dent of � and �. This will become important in our
subsequent analysis.
Suppose an analyst is considering the use of Q, S, or

L scoring in a particular assessment situation. In the
context of ex post normalization, it is natural to assign
the assessor the maximum number of points, �, when
he or she assigns 1 to the correct statement. Likewise,
assigning a score of � when the assessor assigns a
uniform distribution is also appealing. In this case, the
normalization constants given by Equations (4) and
(5) ensure that the scoring rules assign the same score
to perfect knowledge or ignorance. Normalization of
the scoring rules is difficult and many approaches are
possible, but we believe the normalization discussed
here is quite reasonable. In fact, any normalization of
the scoring rules that does not assign identical scores
to perfect knowledge or ignorance seems difficult to
justify.
Following this normalization, we let r� = �r1� � � � � rn�,

where ri = 1 if statement i is true and 0 otherwise,
and r� = �n−1� � � � �n−1�. We will generally take �= 0,
which has the benefit of assuring the assessor a score
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Table 1 Natural Normalization Factors ��= 0�

Scoring rule a� b�

Quadratic (Q)
−1
n− 1

�
n

n− 1
�

Spherical (S)
−1√
n− 1

�

√
n√

n− 1
�

Logarithmic (L) �
�

lnn

of 0 for a statement of ignorance. However, our results
are unchanged for different values of �. With these
assumptions, a and b for each scoring rule are shown
in Table 1.
Figure 1 displays the scoring rules normalized

according to Table 1 for n = 2. Notice that the rules
yield identical scores when ri = 1 and ri = n−1 = 0�5.

3. Rank Order Properties
A positive linear transformation of a scoring rule
will not change the rank ordering of the scores for
a particular set of assessments. Therefore, the rank
order properties between scoring rules are indepen-
dent of the linear normalization scheme. However, to
facilitate comparisons, we will use the normalization
scheme defined by the parameters in Table 1 with
�= 1.
Before proceeding, we define the following vectors

to streamline our notation:
• ith unit n vector: �i = ��i1� � � � � �in�, where

�ij =
{
1 for i= j

0 for i �= j

Figure 1 Normalized Scoring Rules (Two Statements)
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• ith zero n vector: �i = ��i1� � � � � �in�, where

�ij =
{
0 for i= j

1 for i �= j

• uniform n vector: un = n−11= �n−1� � � � �n−1�.
�i is a vector of 0s with 1 in the ith spot. �i is a vector
of 1s with a 0 in the ith spot.
Assume that statement i is correct and that A has

assigned ri = r̂ , thereby earning the normalized log-
arithmic score �i�r̂ �. Because quadratic and spher-
ical scoring are not local, there are a range of �i

and �i values that satisfy �i�r̂ �. �i and �i will
achieve maxima (minima) when r � r achieves a min-
imum (maximum) for a given ri (see Equations (1)
and (2)). Because r � r achieves a minimum equal to
n−1 when r = un and a maximum equal to 1 when
r = �i��i and �i will achieve minima when r = r− =
ri�i + �1 − ri��j and will achieve maxima when r =
r+ = ri�i + �1 − ri��n − 1�−1�i. The minimum values
are then �−

i = �i�r−� and �−
i = �i�r−� with r−i = r̂ ,

where r−i is the ri associated with r−. The maxi-
mum values are �+

i = �i�r+� and �+
i = �i�r+� with

r+i = r̂ , where r+i is the ri associated with r+. The
set of points satisfying these criteria in the case of
�-� is �� = ��l� q�� l=�i�ri�� q ∈ �−

i ��
+
i �� ri ∈ 0�1�!.

Similarly for � -� and � -� we have �� =
��l� s�� l=�i�ri�� s ∈ �−

i ��+
i �� ri ∈ 0�1�! and �� =

��q� s�� q ∈ �−
i ��

+
i �� s ∈ �−

i ��+
i �� ri ∈ 0�1�!.

When n= 2, then r− = r+ and all three scoring rules
will produce the same rank ordering. When there are
more than two statements, the rank ordering among
the rules will no longer be perfect. Figure 2 displays
the relationships between the rules when n = 4 and
n= 8.
As can be seen in Figure 2, the relationship among

the scoring rules is not perfect and degrades with
increasing n. � and � are the most closely related
because they are both functions of r � r, and � is
only a function of ri. In fact, there are always two
responses r−i and r+i such that �i�r−� = �i�r+� and
�i�r−�=�i�r+�, which are the crossover points shown
in the � -� plots. When n= 4 and � > 0, � and � tend
to be more closely related than � and �. However,
the relationship between � and � degrades quickly as
� decreases, while that of � and � improves. When
n= 8, � and � are less closely related than � and �
for � > 0.
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Figure 2 Relationships between Scoring Rules
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3.1. Rank Correlations
Although the rank correlations among the scoring
rules will not be perfect for more than two statements,
the magnitude of these correlations is an empirical
matter. However, to get a sense for what might be
expected in practice, we simulate an assessment situ-
ation by sampling from the sets displayed in Figure 2.
Each sampled point represents the response of a sin-
gle assessor. We sample N points, which yields a rank
correlation among the N assessors. We repeat this
sampling 500 times in an effort to quantify the range
of rank correlations one might observe in practice.
The difficultly is choosing a sampling procedure.

One approach is to uniformly simulate ri to determine
�i�ri� and then uniformly sample from the � and �

bounds corresponding to �i�ri�. This implies a uni-
form sampling of ri but a nonuniform sampling from
the remaining responses because of the nonlinearity
of � and � . Another approach is to uniformly simu-
late ri to determine �i�ri� and then uniformly sample
from the remaining possible responses, ensuring that
the sum of the responses does not exceed 1. The diffi-
culty in this case is that as n increases, the remaining
responses become nearly identical because we must
normalize their sum to equal 1− ri, which will bias
our simulations toward the upper boundaries in Fig-
ure 2. Therefore, to estimate the rank correlations one
might encounter in practice, we generated a set of
simulated data by sampling from ��, ��, and ��

according to the following procedure:
�� and �� Sampling: Draw a sample l uniformly

from �i ∈ 0�1�, which implies ri =�−1
i �l�. We believe

the lower limit of 0 is reasonable because individuals
are likely to assign an ri greater than n−1 to the cor-
rect statement in many situations. Given ri, we then
uniformly sample q ∈ �−

i ��
+
i � and s ∈ �−

i ��+
i �.

�� Sampling: Simulating �� is more difficult. To
ensure that we sample from the same � range as
above, we cannot uniformly sample q from �i ∈ 0�1�
because �i = 0 is the maximum �i when �i = 0.
Rather, we first determine �−

i when r−i = n−1, which is
equal to aQ+bQ�2n−1−n−2�2− 2n+n2��. For example,
when n = 4, �−

i = −0�5 (see Figure 2). We then uni-
formly sample q from �i ∈ �−

i �1�. Next, we find the
r− that satisfies �−

i = q and the r+ that satisfies �+
i = q.

Finally, we sample uniformly from s ∈ �−
i ��+

i �.
Table 2 displays the mean rank correlations of the

samples for 2–8 statements and 10, 100, and 200
assessors. The mean rank correlations are quite high,
being greater than 0.920 in all cases. Rank correlations
decrease with the number of statements and increase
with the number of assessors, which is understand-
able, given the behavior depicted in Figure 2.2 As one
might expect, based on Figure 2, S-Q generates the
largest rank correlations. Q-L tends to produce higher

2 The standard deviations of these estimates are available as an
online supplement on the Decision Analysiswebsite (http://da.pubs.
informs.org/online-supp.html).
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Table 2 Simulated Rank Correlations (500 Simulations)

� vs� � � vs� � � vs� �
Number of assessors �N�= Number of assessors �N�= Number of assessors �N�=

Statements
n 10 100 200 10 100 200 10 100 200

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.963 0.982 0.983 0.959 0.979 0.980 0.987 0.996 0.997
6 0.940 0.966 0.968 0.938 0.966 0.967 0.975 0.989 0.991
8 0.927 0.954 0.956 0.926 0.958 0.959 0.962 0.984 0.984

rank correlations than S-L except for large n. This is
undoubtedly a function of our simulation procedure,
which does not include logarithmic scores below 0.
We next compare these results to the empirical studies
discussed in §1.
Staël von Holstein (1970) tested the performance of

the quadratic scoring rule in an experiment involv-
ing stock price forecasting with five statements (n= 5)
and 72 participants (N = 72). Like Winker, Staël von
Holstein compared the quadratic scores to logarithmic
and spherical scores and reports that the rank correla-
tions in 10 different assessment sessions varied from
0.768 to 0.938 for Q-L and from 0.949 to 0.988 for S-Q.
He did not report the correlation for S-L. When scores
were averaged over the 10 sessions the rank correla-
tions were 0.864 for Q-L and 0.855 for S-Q.
In a second experiment, 30 participants provided

weather forecasts (n = 3–8) and received quadratic
scoring rule feedback. Staël von Holstein (1970) found
the following correlations: Q-L, 0.876; S-L, 0.830; S-Q,
0.982.3

We add to these empirical studies the results of sev-
eral academic testing situations. The midterm exam in
the introductory graduate decision analysis course at
Stanford University is a 15-question multiple-choice
test. Students assign a probability to each of four pos-
sible answers (n= 4) and are scored according to the
logarithmic rule. Figure 3 compares the scores that
would have been obtained for each of the 15 questions
under Q, S, and L scoring for one particular year of
Stanford data. In this case the normalization constants
� and � were equal to 100/15 and 0, respectively.

3 Staël von Holstein reports that rank correlations for S-L and
S-Q were 0.818 and 0.959, respectively. However, direct calculation
using the data he reports in Table 11.5 of his paper yields the val-
ues reported here. Staël von Holstein does not report Q-L, but it
can be calculated from the data he provides.

As can be seen in Figure 3, the theoretical bounds
between the scoring rules are achieved in practice. For
this single year the rank correlations averaged over
the 15 questions were 0.983 for Q-L, 0.991 for S-L,
and 0.993 for S-Q. Based on five years of Stanford test
results involving 1,030 students, we find the following
rank correlation ranges for individual questions: Q-L,
0.906–0.999; S-L, 0.974–0.999; S-Q, 0.948–1.000. When
the students’ 15 individual question scores are aggre-
gated into a total exam score, we find overall rank
correlations of Q-L, 0.991; S-L, 0.992; S-Q, 0.997.4

The combination of our simulation results and
the empirical studies demonstrates that one should
expect high rank correlations in actual assessment
situations.

3.2. Rank Differences
While the rank correlations are high, it is important to
bear in mind that they average over many samples.
It is possible for the rank order of a particular subset
of assessments to be quite different even though the
overall rank correlations are high. For example, based
on the rank correlations in his second experiment,
Staël von Holstein (1970) concludes that the differ-
ent scoring rules yield essentially the same rankings.
However, close inspection of his Table 11.5 shows that
one individual’s ranking increased by 11 of 30 (37%)
by using Q instead of L and by 15 spots (50%) by
using S instead of L. Another individual lost 9 spots
(30%) by being ranked with either Q or S instead of L.
We computed the 10th and 90th percentile rank-

ing differences for our Stanford data set. Over five
years, on a individual question basis, 10% of the stu-
dents would have lost an average of 5.1% in rank

4 Please see the online supplement on the Decision Analysis web-
site (http://da.pubs.informs.org/online-supp.html) for a detailed
breakdown of performance by year.
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Figure 3 Comparison of Scoring Rules for Stanford Data
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by being scored with Q rather than L, 5.3% by being
scored with S rather than L, and 1.3% by being scored
with S rather than Q. On the other hand, 10% of the
students would have gained 1.0% by being scored
with Q rather than L, 1.2% by being scored with S
rather than L, and 1.1% by being scored with S rather
than Q. The gains on an individual question basis are
smaller because, as can be seen in Figure 3, scores
tend to cluster at the upper boundary of the scoring
ranges. In addition to these averages, the performance
on particular questions can be quite poor. For exam-
ple, on one particular question 10% of the students
would have lost at least 21% in rank by being scored
with Q instead of L.5 These differences suggest that
the ranking similarity among the scoring rules is not
as strong as might be assumed from the rank correla-
tions alone.
To investigate this behavior over a range of situ-

ations, we determined the 10th and 90th percentile
ranking differences for each set of scoring rules for
our simulated data. The results appear in Table 3, and,
again, the differences are quite large. For example,
when n= 4 and N = 200, 10% of the assessors would
have lost at least 6.9% by being ranked by Q instead
of L or at least 7.5% by being ranked by S instead of L.
Conversely, when n= 4 and N = 200, 10% of assessors
would have gained at least 6.7% if they were ranked
by Q instead of L and at least 7.7% if ranked S instead
of L. This ranking performance worsens with increas-
ing n. The effect of changes in the number of assessors
is not as clear; increasing N reduces percentage losses

5 Please see the online supplement on the Decision Analysis web-
site (http://da.pubs.informs.org/online-supp.html) for a detailed
breakdown of performance by year.

in rank, but increases percentage gains in rank. S-Q
generally results in smaller changes in rank.6

The ranges in Table 3 are consistent with and help
to explain the change in rankings observed in Staël
von Holstein (1970) and our Stanford data set; such
differences are to be expected.

3.3. Score Equality
The fact that Q and S are not local scoring rules intro-
duces the possibility of two assessors assigning the
same probability to the correct statement but receiv-
ing different scores, or receiving the same score for
the different assignments. Figure 4 displays the range
of possible scores for quadratic and spherical scoring.
These ranges can be quite wide. For example, when
n= 4 the minimum � score when the assessor assigns
0.6 to the correct answer is 0.57 and the maximum
is 0.72, over a 25% increase for the same ri. Like-
wise, an assessor could also achieve a score of 0.57
with ri = 0�51, a 15% decrease compared to 0.6. The
ranges are even wider when n= 8. For example, in the
case of spherical scoring and n= 8, an assessor could
achieve a score of 0.74 with ri assignments between
0.36 and 0.60.
An analysis of the Stanford data set demonstrates

that this impact can be material. For example, if � or
� scoring had been used instead of �, the maximum
response difference to achieve the same or a higher
score would have averaged 0.06 and 0.10, respectively.
These differences varied by question and the maxi-
mum difference on one particular question was 0.14
under � scoring and 0.21 under � scoring. Spheri-
cal scoring tended to produce the largest and most
extreme differences, which is understandable given

6 The standard deviations of these estimates are available in the
online supplement on the Decision Analysiswebsite (http://da.pubs.
informs.org/online-supp.html).
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Table 3 Simulated Ranking Difference (500 Simulations)

� vs� � � vs� � � vs� �
Number of assessors= Number of assessors= Number of assessors=

Statements
n 10 (%) 100 (%) 200 (%) 10 (%) 100 (%) 200 (%) 10 (%) 100 (%) 200 (%)

Loss (10th percentile)
2 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0
4 −12�4 −7�1 −6�9 −13�9 −7�8 −7�5 −6�5 −2�9 −2�6
6 −14�9 −9�8 −9�4 −16�2 −10�1 −9�8 −9�7 −4�9 −4�4
8 −17�2 −11�3 −11�1 −17�5 −11�4 −11�1 −12�8 −6�1 −5�7

Gain (90th percentile)
2 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0
4 5�6 6�7 6�7 6�8 7�7 7�7 1�9 2�8 2�6
6 7�7 9�4 9�2 9�3 10�1 10�1 3�7 4�6 4�4
8 9�0 10�8 10�8 10�4 11�2 11�3 5�5 5�8 5�7

Figure 4 in the case of n= 4. In addition to their mag-
nitude, the maximum response differences tended to
involve a large number of students. For example,
the average number of students involved in an inci-
dent comprising the maximum response difference
was 5.6% for � scoring and 8.2% for � scoring. How-
ever, on one question 28.4% of the class would have

Figure 4 Maximum Response Differences to Maintain Score Equality
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been involved in such an incident under � scoring
and 30.7% under � scoring. Clearly, situations such
as these could be quite difficult for the instructor to
manage, with nearly one-third of the class pointing
out that they received a lower score on a particu-
lar question than another student even though they
assigned a higher probability on the correct statement.
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Problems such as these occurred in all five years of
the Stanford data on each of the 15 questions.7

We believe the behavior discussed in this section,
a consequence of nonlocality, could make the scoring
appear somewhat arbitrary, which would make it dif-
ficult to defend in certain situations.

3.4. Summary
Even though the rank correlations between the scor-
ing rules are generally quite high, as demonstrated
in §3.1, quadratic and spherical scoring often results
in extreme ranking differences compared to loga-
rithmic scoring, as demonstrated in §3.2, which will
always rank assessors according to the probability
they assigned to the correct statement. In addition,
quadratic and spherical scoring introduce the pos-
sibility of one assessor assigning a lower probabil-
ity than other assessors to the correct statement, but
receiving a higher score. As demonstrated in §3.3,
the range over which this can occur is so large that
an assessor may accuse the scoring system of being
arbitrary.
The rank order and score equality features of

quadratic and spherical scoring discussed in this sec-
tion are a consequence of nonlocality. Whether these
issues are a concern depends on the context. In sit-
uations where rank order results are important (e.g.,
academic testing situations), we believe the results
presented here support the use of logarithmic scoring.8

4. Nonlinear Utility
As discussed in §1, the honest revelation property of
proper scoring rules is based on an assumption that
the assessor, A� maximizes her expected score, or has
a linear utility function. If this is not the case, then
honest revelation is not optimal.9 To see this, assume

7 Please see the online supplement on the Decision Analysis web-
site (http://da.pubs.informs.org/online-supp.html) for a detailed
breakdown of performance by year.
8 If the assessor is concerned about rank order performance, then
the scoring rules discussed in this paper are no longer proper
(Lichtendahl and Winkler 2007).
9 We are using “honest” as a shorthand for r∗ = p. Clearly, an asses-
sor with nonlinear utility who assigns r∗ �= p is being rational and
not necessarily dishonest, because the specification of r is an exer-
cise in decision making and not strictly a probability assessment.

A’s utility function u�� � is a strictly increasing func-
tion of � , where � is �, � , or �. A solves

max
r

n∑
i=1

piu��i�r��

s.t.
n∑

i=1
ri = 1

ri > 0 ∀ i�

(6)

which yields the first-order condition (see appendix)

r∗i = pi

u′��i�r∗��∑n
j=1 pju

′��j �r∗��
= pih

∗
i � (7)

where u′ is the marginal utility and h∗
i is the optimal

hedge ratio, which is always positive.
Define %i = pi − r∗i = pi�1 − h∗

i � as the optimal
reduction for statement i. These reductions may also
be negative in the case where A overstates his or her
belief by setting r∗i > pi. If u is linear, then u′ is con-
stant, and h∗

i = 1 and r∗i = pi, which is the standard
proper scoring rule result. Likewise, if pi = 1, then
h∗
i = 1 and %i = 0, since A’s risk aversion is not mate-
rial when he or she is sure of the correct statement.
Whether Equation (7) constitutes a maximum

depends on the concavity of u��i. The second deriva-
tive of u � �i with respect to ri is u′′ · �&�i/&ri�

2 +
u′ · &2�i/&r

2
i , which must be less than 0 for a maxi-

mum. In the cases of Q, S, and L, &2�i/&r
2
i is nega-

tive (see appendix). Therefore, the term u′ · &2�i/&r
2
i

is negative and Equation (7) will constitute a maxi-
mum if A is risk averse (u′′ < 0�. Because the con-
straints in Equation (6) form a convex feasible region,
this maximum is unique. If A is risk preferring,
then a maximum will be obtained only if −u′/u′′ <
�&�i/&ri�

2/�&2�i/&r
2
i �, where the inequality has been

reversed because &2�i/&r
2
i is negative. This places a

constraint on A’s risk tolerance function, in that A has
to be sufficiently risk preferring for a maximum to be
obtained. In this paper, we only address risk-averse
assessors, by assuming u′′ < 0.
Equation (7) is troubling for two reasons. First, the

optimal response is confounded by A’s utility func-
tion through the composite function u′ � �i, interfer-
ing with the honest revelation property of the scoring
rule. Second, it is transcendental and solutions require
numerical methods, because A’s assignment to any
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statement i depends on his or her assignments to the
other statements. It is unlikely that individuals can
reliably carry out such a calculation without com-
puter assistance. Given these complexities, it would
help if we could determine how different the optimal
response under a nonlinear utility function is from the
risk-neutral solution of r∗ = p. Perhaps under condi-
tions that are likely to hold in actual assessments, the
risk-neutral response is close to the optimal response
under nonlinear utility. If so, this would simplify A’s
assessment task and encourage the use of scoring
rules in the assessment process. We address this issue
in the remainder of this section.

4.1. Maximum Optimal Reduction
Suppose A believes that the probability statement i is
correct is pi and is contemplating an ith response ri.
The reduction %i will reach a maximum when A

believes the remaining non-i statements are equally
likely and a minimum when he or she believes only
one of the non-i statements could be true. Believing
the non-i statements are equally likely is the worst or
most risky situation for the assessor because it forces
him or her to spread the remaining assignment out
equally and thereby requires a larger reduction in ri
to properly hedge the response. Thus, A’s reduction
will be maximal when his or her response on each of
the remaining n− 1 statements is uniform and equal
to �1− ri��n− 1�−1, that is, when r= r+. Another way
to see this is to note that %i will reach a maximum for
a given pi when h∗

i achieves a minimum. By assign-
ing r+, A maximizes �i and therefore minimizes the
numerator of h∗

i , because u′ is decreasing. Further-
more, an assignment of r+ maximizes the denomina-
tor of h∗

i (see appendix).
Since A’s response on the non-i statements is uni-

form, h∗
i is independent of A’s probability assess-

ment for each of the remaining statements, as long
as they sum to 1 − ri. This is quite helpful because
it allows us to investigate the maximum optimal reduc-
tion %+

i by investigating responses involving only ri
and pi, essentially reducing the n-dimensional assess-
ment of r to the simple case of n = 2. We can then
think of A as assigning ri to statement i and �1− ri� ·
�n − 1�−1 to each of the remaining n − 1 statements
whose total probability is 1 − pi. In this case, the

scoring rules become:

Q:

Qi�ri�= 2ri − �r2i + �n− 1��1− ri�
2�n− 1�−2�

= 2ri − �r2i + �1− ri�
2�n− 1�−1��

Qj �=i�ri�= 2�1− ri��n− 1�−1− �r2i + �1− ri�
2�n− 1�−1�

S:

Si�ri�= ri/�r
2
i + �n− 1��1− ri�

2�n− 1�−2�1/2
= ri/�r

2
i + �1− ri�

2�n− 1�−1�1/2
Sj �=i�ri�= �1− ri��n− 1�−1/�r2i + �1− ri�

2�n− 1�−1�1/2
L:

Li�ri�= ln�ri�
Lj �=i�ri�= ln��1− ri��n− 1�−1��
Because each of the remaining n − 1 state-

ments yields the same score if correct, Equation (7)
reduces to

r∗i = pi

u′��i�r
∗
i ��

piu
′��i�r

∗
i ��+ �1− pi�u

′��j �=i�r
∗
i ��

� (8)

4.2. Exponential Utility
To obtain some numerical results, assume u�� � =
−exp−R−1� �, where R > 0 is A’s risk tolerance.10

Equation (7) then becomes11

r∗i = pi

exp�−b�R
−1Ti�r∗��∑n

j=1 pj exp�−b�R
−1Tj�r∗��

� (9)

Equation (9) provides several insights. First, under
exponential utility, the optimal response is indepen-
dent of the a� used in the normalization scheme.
This stems from the “delta property” exhibited
by the exponential utility function: If we add an
amount a to all outcomes of a gamble, then the gam-
ble’s certain equivalent increases by a. Second, the
term b�R

−1Ti�r∗� can be interpreted in several ways:
(1) b�Ti�r∗� could be viewed as scaling the core scor-
ing rule T, (2) b�R−1 could be interpreted as an effec-
tive risk aversion with larger bs, leading to greater

10 It has been demonstrated under a variety of conditions that expo-
nential utility is a good approximation of the decision maker’s true
utility function (Kirkwood 2004).
11 In the case of L scoring, this reduces to r∗i = pi�r

∗
i �

−b�R−1 ·
�
∑n

j=1 pj �r
∗
j �

−b�R−1 �−1.
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Figure 5 Maximum Reductions under Exponential Utility
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risk aversion, or (3) b�R−1 could be considered a nor-
malization factor that is scaled by A’s risk tolerance.
In this sense, b�R−1 measures the “concern” induced
by a particular set of statements. For example, since
Q ranges from −1 to 1, b�R−1 measures the range of
possible losses and gains as a fraction (or multiple) of
A’s risk tolerance.
This latter interpretation is particularly attractive

because it serves to explain some experimental results
involving scoring rules. For example, Jensen and
Peterson (1973) compared subjects’ responses under
Q, S, or L scoring and found that the particular rule
used made little difference, while the “steepness” of
the linear transformation between the core scoring
rule T and the normalized rule � (i.e., b� � was sig-
nificant. Specifically, Jensen and Peterson found that
making the function steeper tended to reduce the
response assigned to the most likely statement.

Illustrative Example. Unfortunately, the transcen-
dental nature of Equation (9) hinders the drawing
of general conclusions regarding the scoring rules.

However, we can produce some interesting numerical
results.12

Suppose A faces two different assessment situa-
tions involving the same stakes, but in one case there
are two statements (n= 2) and in the other there are
four (n = 4). Assume further that A is being scored
under Q, S, or L scoring, using the normalization in
Table 1 with � = 1. Figure 5 displays A’s maximum
optimal reduction as a function of pi when R= 1 and
R= 10; recall that these reductions are the largest pos-
sible for a given n. Note that the reductions are 0
when A is certain about statement i (pi = 0 or 1) or
when pi = n−1. In all cases, � has the largest b/R ratio
and � has the lowest, which is a result of the nor-
malization presented in Table 1, which implies b� >

b� > b� . For example, in the case of n = 2, b�/b� =
2 ln 2 ≈ 1�39, b�/b� = √

2 ln 2/�
√
2 − 1� ≈ 2�37, and

b�/b� =
√
2/�2�

√
2− 1�� ≈ 1�71; S has to be “bent” or

12 These results were obtained with the software system Mathemat-
ica (http://www.wolfram.com).
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Figure 6 Sensitivity of Maximum Maximum-Optimal-Reductions
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“stretched” more than the other rules given that its
natural range is 0�1�.
When R = 1, the reductions reach a maximum of

approximately 0.20. However, as demonstrated by
the b/R ratios, which range from 0.7 to 3.4, these
reductions take place in an environment where the
potential losses and gains are on the order of A’s risk
tolerance or much larger. When R= 10, the reductions
are less than 0.04, even though b/R ranges from 0.07
to 0.34, which is still relatively large.
The effect of increasing n is not clear; it increases

the reduction when R= 1 but lowers it when R= 10.
This is because increasing n lowers the probability
assigned to the non-i statements, which should serve
to increase the reduction, but also lowers b� , which
serves to lower the reduction.
Another interesting feature of Figure 5 is that in

every case, � generates the lowest maximum maxi-
mum-optimal-reduction %++

i . For example, when n = 2
and R= 10, the maximum optimal reduction reaches
a maximum of approximately 0.03 for � but is larger
than 0.03 for � and � . This performance holds over
a wide range of beliefs; � and � only generate lower

reductions for pi near 0 or 1. This might be surprising,
given that � holds the prospect of an infinitely nega-
tive score. � performs the worst in the cases depicted
in Figure 5, with larger reductions occurring at less
extreme values of pi.
Figure 6 displays the maximum maximum-optimal-

reduction as a function of the number of state-
ments, n, and the logarithmic b�/R ratio. The b� /R
ratios for quadratic and spherical scoring are deter-
mined using the b�/b� and b�/b� ratios implicit in
Table 1, which ensures that the rules are comparable.
Figure 6 demonstrates that � induces lower reduc-

tions than either � or � over a wide range of scenar-
ios, while � generates the largest. Because the b ratios
are independent of the � and � used in the normal-
ization scheme, these results hold for any normaliza-
tion that yields � whenever A assigns 1 to the correct
statement and � whenever he or she assigns un.
Unfortunately, these results do not hold for all pos-

sible normalizations. Assume we have set r� = �i

but have not constrained r�. In this case, b�/b� =
Li�r���Qi�r��− 1�−1 and b�/b� = Li�r���Si�r��− 1�−1.
These ratios will achieve a minimum when Qi and
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Figure 7 Probability at Which Largest Maximum Reduction Occurs
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Si are minimized because Li ≤ 0. Qi and Si are min-
imized when r� = r−. Because the non-i response is
concentrated at a single point, the minimum values
for bQ/bL and bS/bL are independent of n. Numerical
optimization yields a minimum for bQ/bL of approx-
imately 1.23 when r−i = 0�28 and 1.98 for bS/bL when
r−i = 0�32. A repeat of the analysis in Figure 6 demon-
strates that � induces the lowest reductions in this
case. However, such a normalization scheme seems
artificial.
As shown in Figure 5, in addition to lower reduc-

tions, �’s maximum reduction tends to be shifted
toward more extreme values of pi. This is important
in practice because it suggests that � and � have
wider ranges of larger deviations from honest assess-
ments. Figure 7 plots the probability at which %++

i

occurs, for the range of parameters in Figure 6. When
n= 2, the maximum reductions for � occur at higher
probabilities than for either � or � . Thus, � tends
to induce lower reductions that are shifted toward
more extreme assessments. This may be quite benefi-
cial in practice, because it results in a smaller region

in which nonlinear utility has a material effect. When
n= 4, �’s largest maximum reductions again occur to
the right of � as long as b�/R is less than about 0.25.
For higher values of n, � tends to outperform � or �
on this measure.

4.3. General Logarithmic Scoring Results
We believe the features of logarithmic scoring dis-
cussed in §3 and §4.2 make a strong case for its use in
practice. Therefore, in this section we offer some gen-
eral results that aim to provide guidance for the use
of logarithmic scoring in actual assessment situations.
Figure 5 suggests that even relatively high stakes

should result in modest deviations from the optimal
risk-neutral response.13 Figure 8 plots the maximum
maximum-optimal reduction for � scoring as a func-
tion of b�/R and n. Suppose we wanted to ensure that
all reductions are less than 0.03, believing that indi-
viduals cannot assesses their beliefs more precisely

13 Descriptively, individuals may reduce their assessments more
than this (Phillips and Edwards 1966).
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Figure 8 General Logarithmic Scoring Results
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than this. Then b�/R should be less than about 0.14
when n= 2 and less than about 0.075 when n= 4. This
seems quite reasonable in practice when monetary
amounts are involved. For example, if A’s risk toler-
ance is $10,000, then b should be held below $1,400
when n= 2 and below $750 when n= 4. It is unlikely
that assessments made as part of a decision analysis
project or an assessment experiment would involve
monetary amounts of this magnitude. Even if b�/R=
0�025, %++

i is only 0.01 when n = 4. Because this is
the largest possible reduction under an exponential
utility function, the actual optimal reductions under
the range of possible beliefs will be even lower. In
non-monetary settings, such as academic testing situ-
ations, Figure 8 can be used to determine the largest
value of b�that should be used, given beliefs about
A’s risk tolerance.

4.4. Why L Performs Well
As discussed above, the transcendental nature of
Equations (7), (8), and (9) makes it difficult to draw
general conclusions regarding the scoring rules under
nonlinear utility (e.g., why L scoring induces the low-
est deviation from the optimal risk-neutral response).
However, we can gain some insight by investigating
the behavior of h∗

i . From Equation (8) we have

�h∗
i �

−1 = piu
′��i�r

∗
i ��+ �1− pi�u

′��j �=i�r
∗
i ��

u′��i�r
∗
i ��

= pi + �1− pi�
u′��j �=i�r

∗
i ��

u′��i�r
∗
i ��

�

The maximum reduction is driven by the ratio of A’s
marginal utility at the points �j and �i. As this ratio is

Figure 9 Differences in Normalized Scores �n= 2�

1

2

3

4

5

6

7

8

0.5 0.6 0.7 0.8 0.9 1.0
Response on statement i (ri)

Sc
or

e 
di

ff
er

en
ce

 (
i
–

j)
�

��

�

�

increased, �h∗
i �

−1 increases and therefore h∗
i decreases.

In the case of exponential utility this ratio is

u′��j �=i�r
∗
i ��

u′��i�r
∗
i ��

= exp−b�R
−1Tj�r

∗
i ��

exp−b�R
−1Ti�r

∗
i ��

= expb�R−1�Ti�r
∗
i �− Tj�r

∗
i ����

Under exponential utility, the deviation from the
risk-neutral assessment depends on the difference
between scores Ti and Tj , scaled by b�R

−1. � and �,
for example, will generate the same h∗

i when
b�R

−1�Qi�r
∗
i �−Qj�r

∗
i �� = b�R

−1�Li�r
∗
i �− Lj�r

∗
i ��, which

is independent of R. Therefore, A’s risk tolerance gov-
erns the magnitude of h∗

i under the different rules,
but not if these values are equal. The critical term is
then b� �Ti�r

∗
i �−Tj�r

∗
i ��=�i�r

∗
i �−�j �r

∗
i �. Figure 9 plots

the difference between the normalized scoring rules
from Figure 1 for the case where n= 2, and the pos-
sible responses are ri ≥ 0�5 and rj = 1− ri. � produces
lower score differences than either � or �, provided ri
is less than 0.885 or 0.904, respectively. � yields lower
score differences than � , provided ri ≤ 0�838.

5. Conclusions
Strictly proper scoring rules continue to play an
important role in probability assessment. Analysts
have many rules from which to choose. In this paper
we have quantified the implications of the non-
locality feature of quadratic and spherical scoring and
demonstrated the superior performance of logarith-
mic scoring under nonlinear utility.
Because of its local property, logarithmic scoring

will always assign a higher score to higher-probability
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assignments on the correct statement. Both spherical
and quadratic (and therefore Brier) scoring can per-
form poorly in this regard. Where rank ordering is
important, as it is in academic settings, this argues
strongly for the logarithmic rule.
In addition, logarithmic scoring induces lower devi-

ations from honest assessments under exponential
utility in a wide range of scenarios. This conclu-
sion is somewhat surprising, given that logarithmic
may yield an infinitely negative score. This behav-
ior is important in practice because the risk-neutral
assumption is an ideal that may not be realized in
actual assessment situations. If the analyst is con-
cerned about the impact of nonlinear utility, then the
logarithmic rule will reduce the magnitude of this
problem.
Finally, we have demonstrated that the overall

impact of nonlinear utility is quite small. In most
assessment situations, deviations from honest assess-
ments should be small, which should provide comfort
to those who would like to use strictly proper scoring
rules as part of the probability assessment process.
An online supplement to this paper is available on

the Decision Analysis website (http://da.pubs.informs.
org/online-supp.html).

Acknowledgments
The author thanks the following individuals: Ross Shachter
for a stimulating discussion after the author’s INFORMS
2005 talk on scoring rules that spurred the author’s inter-
est in the rank order properties; Thomas Seyller for pro-
viding three years of Stanford scoring data; Guy Curry for
a helpful conversation regarding the optimal response for
the spherical scoring rule; and Jim Smith, Bob Winkler, two
referees, and the associate editor for helpful comments and
suggestions on a draft of this paper.

Appendix

Ex Post Normalization
We want to normalize the rules such that �j �r�� = a +
bTj �r�� = � and �k�r�� = a + bTk�r�� = �. From the �
condition we have a = � − bTj �r��. From the � condi-
tion we have �k�r�� = � + bTk�r�� − Tj�r��� = � or b =
��−��Tk�r��− Tj�r���−1. Therefore, a= �− ��−��Tk�r��−
Tj�r���−1Tj�r��= ��Tk�r��−�Tj�r���Tk�r��−Tj�r���−1.
Nonlinear Utility Solution
Q: Form the Lagrangian

)�r�*���=
n∑

i=1
piu��i�r��+*

( n∑
i=1

ri − 1
)
+� � r�

Rewriting in terms of the core scoring rule, we have

)�r�*���=
n∑

i=1
piu

(
a+ b

(
2ri −

n∑
j=1

r2j

))
+*

( n∑
i=1

ri − 1
)
+� � r�

Differentiating )�r�*��� with respect to ri and setting equal
to 0, we obtain

2b
[
piu

′��i�r
∗��− r∗i

n∑
j=1

pju
′��j �r

∗��
]
+*++i = 0 or

r∗i =
piu

′��i�r∗��+ �*++i�/2b∑n
j=1 pju

′��j �r∗��
�

From the equality constraint we have
∑n

i=1 r
∗
i − 1= 0. Sub-

stitution of r∗i yields the condition that +
∗
i =−*∗. Therefore,

r∗i = piu
′��i�r∗��/

∑n
j=1 pju

′��j �r∗��.
S: This derivation follows the proof from Toda (1963)

that S is strictly proper under risk neutrality. Because S�r�=
S�a · r�, a multiple of r yields the same score as r and a
family of optimal solutions exists. Therefore, we are free to
set Si�r� = ri/k under the constraint that k = �

∑n
i=1 r

2
i �
1/2 or

k2 =∑n
i=1 r

2
i . Assume the constraint ri > 0 is not binding at

the optimal and form the Lagrangian

)�r�*�=
n∑

i=1
piu�rik

−1�−*

( n∑
i=1

r2i − k2
)
�

Differentiating )�r�*� with respect to ri and setting it equal
to 0, we obtain r∗i = piu

′��i�r∗��/�2*k�. From the equality
constraint, we have

∑n
i=1 �r

∗
i �
2 − k2 = 0. Substitution of r∗i

yields �*∗�2 =∑n
i=1 piu

′��i�r∗���2/�4k4�. From r∗i we see that
*> 0, and therefore, *∗ = �

∑n
i=1 piu

′��i�r∗���2�1/2/�2k2�. Sub-
stitution of *∗ into r∗i yields

r∗i = piu
′��i�r

∗��k
( n∑

j=1
pju

′��j �r
∗���2

)−1/2
�

Because k is an arbitrary constant, we can let

k=
( n∑

j=1
pju

′��j �r
∗���2

)1/2( n∑
j=1

pju
′��j �r

∗��
)−1

�

in which case r∗i = piu
′��i�r∗��/�

∑n
j=1 pju

′��j �r∗���. Because
r∗i > 0, we see that the nonnegativity constraint is not
binding.
L: Form the Lagrangian

)�r�*���=
n∑

i=1
piu��i�r��+*

( n∑
i=1

ri − 1
)
+� · r�

Rewriting in terms of the core scoring rule, we have

)�r�*���=
n∑

i=1
piu�a+ b ln ri�+*

( n∑
i=1

ri − 1
)
+� � r�

Differentiating )�r�*��� with respect to ri and setting equal
to 0, we obtain

bpiu
′��i�r

∗��
1
r∗i

+*++i = 0 or r∗i = pi

b

−�*++i�
u′��i�r

∗���
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From the equality constraint, we have
∑n

i=1 r
∗
i − 1 = 0.

Substitution of r∗i yields the condition that −�* + +i� =
b
∑n

i=1 piu
′��i�r∗��. Therefore,

r∗i =
piu

′��i�r∗��∑n
j=1 ·pju

′��j �r∗��
�

Concavity of Scoring Rules
Q: Qi�r�= 2ri − r · r� &Qi�r�/&ri = 2−2ri = 2�1− ri� > 0 and

&2Qi�r�/&r
2
i =−2< 0.

S: Si�r�= ri/�r · r�1/2.
&Si�r�
&ri

= �r · r�1/2− r2i �r · r�−1/2
r · r

= �r · r�−1/21− r2i �r · r�−1��
which will be positive when ri �= 1 or r �= un� because
r2i �r � r�−1 < 1.

&2Si�r�/&r
2
i = −ri�r · r�−3/2− 2ri�r · r�−3/2+ 3r3i �r · r�−5/2
= −3ri�r · r�−3/2+ 3r3i �r · r�−5/2
= 3ri�r · r�−3/2�r2i �r · r�−1− 1��

which is negative as long as ri �= 1 or r �= un�
L: Li�r� = ln�ri�� &Li�r�/&ri = r−1i > 0 and &2Li�r�/&r

2
i =

−r−2i < 0.

Maximum Optimal Reduction
The denominator of h∗

i can be written as piu
′��i�r∗�� +∑n

j=1� j �=i pju
′��j �r∗��. We have a belief pi and are considering

the assignment of ri. We seek the set of beliefs and responses
on the non-i statements that will force the denominator of
h∗
i to be maximal. Formally, we solve

max
pj � r

∗
j

piu
′��i�r

∗��+
n∑

j=1� j �=i

pju
′��j �r

∗��

s.t.
n∑

j=1� j �=i

pj = 1− pi

n∑
j=1� j �=i

r∗j = 1− ri�

Forming the Lagrangian, we have

)�p�r∗�*�+�=piu
′��i�r

∗��+
n∑

j=1�j �=i

pju
′��j �r

∗��

+*

( n∑
j=1�j �=i

pj−1−pi

)
++

( n∑
j=1�j �=i

r∗j −1−ri

)
�

Differentiating )�p� r∗�*�+� with respect to pj we obtain
&)/&pj = u′��j �r∗�� + *. Setting this equal to 0 yields the
condition u′��j �r∗�� = −*. If u′ has an inverse, which we
assume, then �j �r∗� = u′−1�−*�, which is a constant, and
the scores on the non-i statements are equal. This holds

for any r∗j , and therefore the assignments on the remain-
ing statements are equal and r = r+. The numerator of h∗

i

is minimal when r = r+ and the denominator is maximal.
The fact that the response on the non-i statements is equal
means the specific pi values are immaterial, as long as they
sum to 1− pi. The mixed partial derivatives &2)/&pj&rj and
&2)/&rj&pj are identical and equal to u′′��j �r∗���&�j /&rj � < 0.
&2)/&2pj = 0 and, therefore, the Hessian




&2)

&p2i

&2)

&pi&ri

&2)

&ri&pi

&2)

&p2i




is negative semidefinite and the first-order conditions yield
a maximum that is not strict. The maximum is not strict
because there is an infinite number of probability assign-
ments to the non-i statements that yield the maximum
reduction as long as the non-i responses are forced to be
equal. Therefore, the maximum reduction will be achieved
when assignments to the non-i statements are equal. This
would be achieved if the assessor believed the non-i state-
ments to be equally likely or if we force the assessor to
evenly distribute the non-i responses irrespective of his or
her beliefs. Either interpretation generates the largest reduc-
tions and reduces the problem to the selection of ri.
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