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The ability to value information is a central feature of decision analysis and one of its most interesting areas
of application. Unfortunately, general assertions regarding the drivers of information value or its proper-

ties have been difficult to formulate or have been disproved by counterexample. In this paper, we investigate
the value of imperfect information relative to perfect information (RVOI). Within the context of a two-action
decision problem with normal priors and exponential utility, we derive a closed-form solution for the value
of information and demonstrate that the RVOI is maximal when the decision maker is indifferent between the
two alternatives. In addition, we determine when the value of an information system providing a normally
distributed signal with correlation coefficient � is equal to �× 100% or �2 × 100% of the value of perfect infor-
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value of imperfect information in particular settings.
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1. Introduction
The ability to value information is a central feature
of decision analysis and one of its most interest-
ing areas of application. Unfortunately, general state-
ments regarding the drivers of information value
or its properties have been difficult to formulate or
have been disproved by counterexample. For exam-
ple, Hilton (1981) proved that there is no general
monotonic relationship between the degree of action
flexibility and information value. That is, adding
(removing) actions to (from) the decision-maker’s fea-
sible set does not necessarily increase (decrease) infor-
mation value. The same paper also demonstrated that
there is no general monotonic relationship between
the degree of risk aversion and information value.
Gould (1974) showed that increasing uncertainty in
the prior distribution does not necessarily lead to
larger valuations of information. Samson et al. (1989)
demonstrated that value of information (VOI) is
not generally additive across independent sources of
uncertainty. For example, the VOI on random vari-
ables x̃ and ỹ together may be greater than (superad-
ditive), less than (subadditive), or equal to the VOI on
x̃ plus the VOI on ỹ.

Despite these negative findings, progress has been
made by studying stylized or canonical VOI formula-
tions such as the two-action linear-loss (TALL) prob-
lem, which was analyzed extensively by Schlaifer,
Raiffa, and Pratt (Schlaifer 1959, Raiffa and Schlaifer
1961, Pratt et al. 1995). In this problem, a risk-neutral
decision maker (DM) chooses between two acts or
alternatives (sometimes referred to as the go/no-go,
accept/reject, act/wait, new/status-quo alternatives)
with uncertain outcomes, which are a linear function
of a random variable x̃.
Although general conclusions are unobtainable, the

simple TALL structure facilitates limited conclusions
regarding VOI drivers. For example, Mehrez and
Stulman (1982) demonstrated that when considering
only translations of the underlying probability distri-
bution functions, the expected value of perfect infor-
mation is maximized when the expected value of
the accept alternative is equal to the value of the
reject alternative (i.e., the DM is indifferent). Fatti
et al. (1987) extended this result to the case of imper-
fect information, again, only under translations of the
probability density functions. Delquié (2008) proved
that the difference between the expected utility with
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information and the expected utility without informa-
tion is maximal when the DM is indifferent under a
weaker restriction regarding the change in the under-
lying distributions. Delquié extended this result to the
VOI as long as the DM’s utility function exhibits con-
stant absolute risk aversion. In the case of risk aver-
sion, Mehrez (1985) proved that when the expected
value of the accept alternative is less than or equal to
the value of the reject alternative, a risk-averse DM
will never pay more for perfect information than will
a risk-neutral DM.
When the random variable in the TALL problem is

assumed to be normally distributed, a variant called
the TALL problem with normal priors (TALL-N) is
obtained. This further restriction enabled Schlaifer
(1959) to derive closed-form solutions for the value of
both perfect and imperfect information. This allowed
Keisler to study the effect of changes in prior mean
and standard deviation on information value (Keisler
2004) and the conditions underlying sub- and super-
additivity in information value (Keisler 2005).
In this paper, we analyze the relationship between

imperfect and perfect information in the two-action
problem for risk-neutral DMs (i.e., the TALL prob-
lem) and risk-sensitive DMs whose utility function is
exponential. We refer to the latter as the two-action
exponential-utility (TAXU) problem and to the fur-
ther restriction of normality as TAXU-N. In partic-
ular, we are interested in the ratio of the value of
imperfect information to the value of perfect infor-
mation (RVOI), or the relative value of information
(relative to the gold standard of perfect information).
For example, suppose a DM can purchase an infor-
mation system1 whose signal � is correlated with the
uncertain value of the accept alternative, with cor-
relation coefficient �. How much is such a system
worth relative to perfect information? An initial guess
might be that it should be worth � × 100% of per-
fect information because it is in some sense (but not
always in the right sense, as we shall see) �× 100%
as “good” as perfect information. A slightly more
sophisticated guess is that such a system should be

1 An information system is an information-gathering opportunity,
such as research or testing, which provides an observable signal
that is probabilistically related to the uncertainty in which we are
interested but cannot directly observe (Demski 1972).

worth �2 × 100% of perfect information, since �2 is a
measure of the proportional amount by which knowl-
edge of � reduces the variance of x̃ if the regression
of x̃ on �̃ is linear, as is the case if x̃ and �̃ are jointly
normally distributed, for example. Not surprisingly,
neither of these answers is correct in all cases. They do
obtain, however, in certain circumstances. For exam-
ple, Pratt et al. (1995) demonstrated that RVOI = �2

under quadratic loss and a linear regression function,
and Fatti et al. (1987) proved that RVOI = � within
the context of the TALL-N problem when the DM is
indifferent.
The contribution of this paper is twofold. First,

we obtain a closed-form solution for the VOI in the
TAXU-N problem, the TALL-N solution discussed
above being a special case. Second, we provide insight
into the drivers of information value in general and
the RVOI in particular, in both the TALL-N and
TAXU-N problems. For example, we demonstrate
under what conditions this ratio would be equal to �

or �2. The result of Fatti et al. (1987) is shown to be a
special case of our more general formulation.
The RVOI is of interest for several reasons. First, the

value of perfect information is often easier to calcu-
late than the value of imperfect information because
the likelihood assessments and Bayesian calculations
are trivial. This is not simply a matter of computation;
Bayesian analysis often requires difficult assessments,
which greatly limits its use in practice. For exam-
ple, an oil company may be able to readily calculate
the value of perfect information regarding reservoir
property x. Yet, valuing a test that provides imperfect
information regarding x may require difficult proba-
bilistic assessments and modeling. Understanding the
behavior of the RVOI, albeit in a simple setting, may
provide a rough estimate of the test’s potential value.
Second, both theoretic and pedagogic settings benefit
from understanding the behavior of imperfect infor-
mation relative to perfect information. For example,
as the prior uncertainty is increased, does imperfect
information become more or less valuable relative to
perfect information?
The strictness of the TAXU and TAXU-N assump-

tions results in a highly stylized problem, but this
constraining of the problem space is necessary if we
hope to derive general analytic results. The question
is then for how many problems does the model we
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study capture their essential features and how well.
We believe that both the TALL-N and TAXU-N mod-
els perform quite well in this regard. Many important
decision opportunities are two-action problems, e.g.,
whether or not to launch a new product, invest or
not in a risky project, or accept or reject a particu-
lar part in a quality-control setting. In addition, many
random variables can be appropriately modeled as
being normally distributed, perhaps after transforma-
tion. Finally, risk neutrality is a common assumption
used in practice. When risk sensitivity is important,
the exponential utility function is a robust approxi-
mation (Kirkwood 2004).
The remainder of this paper is organized as fol-

lows. In §2 we present a motivating example. In §3
we review the TALL-N problem. In §4 we introduce
the TAXU-N problem, derive the closed-form solution
for the VOI in this setting, and show that it converges
to the TALL-N problem as the DM’s utility function
approaches risk neutrality. In §5 we analyze the RVOI
in both the TALL-N and TAXU-N problems. Finally,
we conclude in §6.

2. Motivating Example
In this section, we introduce an example that moti-
vates our study of the value of information ratio and
facilitates the understanding of subsequent results.
Suppose an oil company with a risk tolerance of

$100 million is considering drilling a well in an unde-
veloped area. Based on core samples and well logs,
the company estimates that the net present value of
the well is normally distributed with a mean of $10
million and a standard deviation of $20 million. Eval-
uating the standard normal cumulative at a value of
0.5 ($10/$20), the company finds that the probabil-
ity of the well being a good investment (net present
value >$0) is 69%—implying a 31% chance of losing
money. If the company does not drill, it will earn a
sure $0.
In an effort to improve its decision, the company is

considering the acquisition of a seismic survey cost-
ing $2 million. Modeling the value of seismic surveys
is complicated and time consuming (Bickel et al. 2006,
Pickering and Bickel 2006, Gibson et al. 2007). How-
ever, based on previous results in similar areas, the oil
company’s geophysicist believes the seismic results

are correlated with the true value of the well with a
correlation coefficient of 0.5.
Should the company acquire the survey? Should

the company spend the time to model this
information-gathering opportunity in detail? Is it pos-
sible to develop a “back of the envelope” value for the
survey? How sensitive is this value to the company’s
estimate of the correlation coefficient (or other model
parameters)? Would a better-quality seismic survey,
with a 25% higher correlation coefficient, be worth
25% more?
As we shall soon see, the expected value of perfect

information (EVPI) regarding the value of the well is
almost $4 million. Based on this value, the company
considers two simple arguments: (1) The EVPI is sub-
stantially higher than the cost of the (imperfect) sur-
vey and therefore the survey must be worthwhile.2

(2) The survey is 50% as good as perfect information
because its correlation coefficient is 0.5. Therefore, the
survey is worth $2 million—equal to its cost.3

Experts in decision analysis will recognize that nei-
ther of these arguments is correct. Do we therefore
recommend that the company explicitly model the
information-gathering opportunity? Or, can we pro-
vide a better first-cut estimate of the survey’s value?

3. The Two-Action Linear-Loss
Problem

In this section, we review the version of the two-
action linear-loss problem that we study in this paper.
This serves to introduce notation and build intuition
regarding the exponential-utility solution, which is
more complicated.
Suppose a risk-neutral DM faces a choice between

two alternatives: Alternative 0 �a0� and Alterna-
tive 1 �a1�. Alternative 0 yields a certain payoff of v,
while a1 produces an uncertain payoff characterized
by a random variable x̃ with mean 
 = E�x̃, where
E is the expectation operator.4 In the absence of addi-
tional information, the DM’s optimal choice is a0 if

2 Some practitioners use this argument to gather information. For
example, see Portella et al. (2003).
3 In the author’s experience, practitioners and students find this
argument compelling.
4 We could instead assume that a0 produces a random payoff �v,
independent of x̃, but such an assumption would not materially
change our results and complicates the notation somewhat.
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Figure 1 TALL-N Problem When the Decision Maker Initially Prefers
the Risky Alternative
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3.1. The TALL Problem with Normal Priors
We now assume that x̃ is normally distributed with
mean 
 and standard deviation � , obtaining the
TALL problem with normal priors (TALL-N). The left-
hand graphic in Figure 1 displays a case where the
decision maker initially prefers the risky alternative.

Expected Value of Perfect Information. The dotted
lines in Figure 1 show the DM’s payoff function with
perfect information. If x is less than v, then the deci-
sion maker will choose a0 and earn v. On the other
hand, if x is greater than or equal to v, the DM will
choose a1 and earn x. The expected value with per-
fect information is equal to E�max�v�x� and may be
readily calculated. We first standardize x̃ by letting
z = �x − 
�/� or x = z� + 
. This yields the right-
hand diagram in Figure 1, where c = �
− v�/� . c is
a measure of the distance or divergence between the
alternatives measured in units of standard deviation,
which we will refer to as the “coefficient of diver-
gence.” The expected value with perfect information
is then

E�max�v�x� = 
− c���−c�+�
∫ 	

−c
z��z�dz

= 
− c���−c�+���c�� (1)

where � is the standard normal cumulative probabil-
ity function and � is the standard normal probability

density function. The integral in Equation (1) is the
mean of z̃ given that z is greater than –c, which is
simply ��−c�− ��	� = ��−c� = ��c� since z̃ is stan-
dard normal. The expected value of perfect informa-
tion (EVPI) is E�max�v�x�−max�v�
� or

EVPI =



����c�− c��−c� 
≥ v

����c�+ c��c� 
< v�

(2)

The term in brackets is known as the unit-normal
linear-loss integral (Schlaifer 1959, p. 453).
Motivating Example: Returning to the example intro-

duced in §2, with c = $10/$20= 0�5 and � = $20 mil-
lion, we find that EVPI (in millions) = $20���0�5� −
0�5��−0�5�= $3�96.

Expected Value of Imperfect Information. Now
suppose the DM can obtain a free information system
(IS) �� whose signal � is jointly normally distributed
with x̃ with positive correlation coefficient �.5 We will
refer to such an information system as a “�-informa-
tion system” or �-IS. The DM’s expected value with
the free IS is E�max�v�E�x̃ � ��. The expected value
of information (EVI) is

EVI��x̃�= E�max�v�E�x̃ � ��−max�v�
�� (3)

Without loss of generality, we assume that the infor-
mation signal is unit normal and therefore the con-
ditional mean of x̃ given � is E�x̃ � � = 
 + ���,
which will exceed v as long as � > �v − 
�/���� =
−�−1c. The expected value of information is then (see
Appendix A1 for derivation)

EVI� =



������−1c�−�−1c��−�−1c� 
≥ v

������−1c�+�−1c���−1c� 
< v�

(4)

A 1-IS is perfect information or clairvoyance and has
a value of EVI1 ≡ EVPI . Notice that since �−1c =

5 If we had allowed for random v then we would have required
that �v be independent of x̃ and �.



Bickel: Relationship Between Perfect and Imperfect Information
120 Decision Analysis 5(3), pp. 116–128, © 2008 INFORMS

Figure 2 Expected Utility of Perfect Information in TAXU-N Problem
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−v�/����, the expected value of imperfect informa-
tion is equivalent to expected value of perfect infor-
mation with a standard deviation equal to �� .6

4. The Two-Action Exponential-Utility
Problem

We now extend the TALL problem by allowing the
DM to be risk sensitive. Specifically, we will assume
that the DM’s utility function is exponential and
exhibits constant absolute risk aversion (CARA). We
refer to this as the two-action exponential-utility
(TAXU) problem. In the remainder of this paper, we
assume that the DM’s utility function is monotoni-
cally increasing such that u�x�=−sgn�R�Exp�−x/R�,
where R is the DM’s risk tolerance. The monotonically
decreasing case is similar and is omitted.
The DM is now concerned with the certain equiv-

alent �x of the risky alternative. In the absence of
additional information, the DM’s optimal choice is a0
if �x < v and a1 if �x ≥ v. The DM’s expected utility
without additional information is max�u�v��Eu�x̃��=
max�u�v��u��x��, where Eu�x̃� ≡ E�u�x̃�. The DM’s
certain equivalent without additional information is
u−1�max�u�v��Eu�x̃���=max�v� �x�.
As before, suppose the DM can obtain a free infor-

mation system that yields a signal � regarding the
value of x̃. The DM’s expected utility and certain equi-
valent of the free IS are E�max�u�v��Eu�x̃ � ��� and
u−1�E�max�u�v��Eu�x̃ � ����, respectively. We define
the VOI on random variable x̃ under information sys-
tem � as the DM’s indifferent buying price, which

6 The TALL problem can be extended to the case of a lognormal
prior. See Appendix A7 for the EVI formula.

under CARA is

VOI��x̃�

= u−1�E�max�u�v��Eu�x̃ � ����−max�v� �x�� (5)

4.1. The TAXU Problem with Normal Priors
Because general conclusions regarding VOI are dif-
ficult to draw, we maintain a simple structure by
assuming that x̃ is normally distributed with mean 


and finite standard deviation � . We refer to this as
the TAXU problem with normal priors (TAXU-N).
The normality assumption in conjunction with the
assumption of exponential utility yields a certain
equivalent for x̃ of �x = 
 − �2/�2R� (Howard 1971).
The term �2/�2R� is the risk premium.

Value of Perfect Information. The DM’s expected
utility with perfect information is (see Appendix A2
for derivation)

E�u�max�v�x��

= u�v���−c�+u��x��1−��−c+ k�� (6)

where k = �/R. We refer to k as the “coefficient of
relative risk” because it measures the degree of uncer-
tainty in x̃, in units of risk tolerance; larger values
of k imply larger risk premiums or, speaking loosely,
greater discounting of the expected value because
uncertainty is greater relative to the DM’s risk toler-
ance. The condition �x ≥ v is equivalent to the condi-
tion 2c ≥ k.
Equation (6) can be readily understood in the con-

text of Figure 2. We begin by standardizing x̃ and
then transforming the expected-utility calculation to
the equivalent case given in Equation (6) and depicted
in the right-hand graphic of Figure 2. The first part of
Equation (6) is straightforward: the DM will earn u�v�
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with probability ��−c�. The second part is more com-
plicated: the DM will earn the utility of a conditional
certain equivalent with probability 1 − ��−c�. This
case is equivalent to earning the utility of the gamble
u��x� with a probability equal to 1−��−c+ k�, where
the size of the adjustment k depends upon the uncer-
tainty of the gamble and the DM’s risk tolerance.
The value of perfect information �VOI1� is (see

Appendix A3 for derivation)

VOI1 =




−R ln�eck−k2/2��−c�+��c− k�

2c ≥ k ��x≥ v�

−R ln���−c�+ e−ck+k2/2��c− k�

2c < k ��x < v��

(7)

Equation (7) is the analogue to Equation (2), which
yields the expected value (risk neutral) of perfect
information.
Motivating Example: Returning to our motivating

example with c = 0�5, k = 0�2, and R = $100 million,
we find that VOI1 = $4�90 million. Thus, the com-
pany’s risk aversion has resulted in an increase in the
value of perfect information.

Value of Imperfect Information. To analyze the
value of imperfect information, we maintain our
assumption that the information signal and the value
of the risky alternative are jointly normal with posi-
tive correlation coefficient �.
Given a particular signal �, the DM’s posterior cer-

tain equivalent is �x� = 
+ ���− �2�1− �2�/�2R�. Let
VWI� be the DM’s certain equivalent with a costless
�-IS or the Value with Information (VWI). The DM’s
expected utility with the information system is then
u�VWI�� = E�u�max�v� �x���, which is equal to (see
Appendix A4 for derivation)

u�VWI�� = u�v��

(
v−E��x�

��

)

+u��x�
[
1−�

(
v−E��x�

��
+�k

)]
� (8)

The form of Equation (8) is similar to that of Equa-
tion (6), with the following differences. Instead of the

difference v−
, we are now concerned with the dif-
ference between v and E��x� = 
 − �2�1 − �2�/�2R�,
which is the expected posterior certain equivalent.7 In
addition, as was true in the risk-neutral case, the rel-
evant standard deviation is �� rather than simply � .
We may write Equation (8) more compactly as

u�VWI�� = u�v��

(
− c

�
+ k

�

1−�2

2

)

+u��x��
(
c

�
− k

�

1+�2

2

)
� (9)

Because the DM’s utility function exhibits constant
risk aversion, his/her indifferent buying price for the
costless �-IS, or the VOI, is (see Appendix A5 for
derivation)

VOI� = −Rln�−sgn�R�u�VWI��−max�v� �x�

=




−Rln
[
eck−k2/2�

(
− c

�
+ k

�

1−�2

2

)

+�

(
c

�
− k

�

1+�2

2

)]
2c≥k ��x≥v�

−Rln
[
�

(
− c

�
+ k

�

1−�2

2

)

+e−ck+k2/2�

(
c

�
− k

�

1+�2

2

)]

2c<k ��x<v��

(10)

Note that the term sgn�R� cancels in the certain equiv-
alent formula. The value of perfect information is
found by setting � = 1 in Equation (10), to obtain
Equation (7). Thus, we have obtained a closed-form
solution for the value of information in the TAXU-N
problem. We believe Equations (7) and (10) are new, as
previous authors (Schlaifer 1959, Raiffa and Schlaifer
1961, Winkler 1972, Keisler 2004) have focused on the
TALL-N problem.
We can obtain the TALL-N solution via the fol-

lowing procedure. First, find the utility of the value

7 Of course, the expected posterior certain equivalent is simply 


in the risk-neural case.
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of information (the indifferent buying price). From
Equation (10), this is

u�VOI��

=




−sgn�R�

[
eck−k2/2�

(
− c

�
+ k

�

1−�2

2

)

+�

(
c

�
− k

�

1+�2

2

)]
2c≥k ��x≥v�

−sgn�R�

[
�

(
− c

�
+ k

�

1−�2

2

)

+e−ck+k2/2�

(
c

�
− k

�

1+�2

2

)]
2c<k ��x<v��

(11)

Next, add 1 to the utilities in Equation (11) and divide
by 1 − e−" , where " = R−1. This places the original
utility function in the form

u�y�= 1− sgn�"�Exp�−"y

1−Exp�−"
�

which shows that linear utility is a limiting case of
exponential. Next, apply l’Hôpital’s rule and take the
limit as " approaches zero (see Appendix A6 for
derivation). This yields the expected value of infor-
mation (EVI) as given in Equation (4). Letting � = 1
in Equation (4) yields the expected value of perfect
information given in Equation (2). Thus, the TALL-N
problem is a limiting case of the TAXU-N problem as
R approaches infinity.

5. The Ratio of Imperfect to Perfect
Information Value

5.1. TALL-N Problem
If we set 
 = v in Equation (4), and thereby c= 0,
then EVI� = ����0� = �EVI1. In other words, in the
TALL-N problem the expected value of imperfect
information is simply � times the value of perfect
information when the DM is indifferent, as demon-
strated by Fatti et al. (1987). In general, the ratio of
the value of imperfect to perfect information in the

TALL-N problem is

EVI�
EVI1

=




� 
= v

����−1c�− c��−�−1c�
��c�− c��−c�


> v

����−1c�+ c���−1c�
��c�+ c��c�


< v�

(12)

Therefore, EVI�/EVI1 is a function only of the cor-
relation coefficient and the coefficient of divergence, c.
Figure 3 displays Equation (12) for correlation coef-
ficients ranging from 0.1 to 1.0. The DM is indif-
ferent between a0 and a1 when c = 0. When c > 0
he/she prefers a1 and when c < 0 he/she prefers a0.
We see that EVI�/EVI1 is symmetric about c = 0 and
falls quickly as the absolute value of c is increased.
The highlighted area is the region where the ratio is
at least �2. This region was found numerically because
Equation (12) cannot be solved explicitly for c.
Figure 3 confirms that moving the DM away from

the point of indifference by either increasing the
absolute difference between the two alternatives or
decreasing the standard deviation of the risky alter-
native (assuming 
 �= v� lowers the value of imperfect
information relative to perfect information.
Motivating Example: Returning to the example pre-

sented in §2, we note that c = 0�5, �= 0�5, and there-
fore EVI0�5/EVI1 = 0�21. Thus, if the company were
risk neutral, the survey would only be worth about

Figure 3 The Ratio of the Expected Value of Imperfect Information to
the Expected Value of Perfect Information as a Function of
the Coefficient of Divergence in the TALL-N Problem
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$0.84 million (21% of EVI1), which is less than half its
cost. The small dot in Figure 3 represents the value of
the survey; this point is quite distant from the loca-
tion where the survey would be value-adding (50%
of EVI1). In fact, based on Figure 3, or by numeri-
cally solving Equation (12) for �, the $2 million sur-
vey would require a correlation coefficient above 0.7
to be value-adding. Similarly, we could use Figure 3
to explore the implications of other changes in model
parameters. For example, if the well’s standard devi-
ation were only $10 million, then c= 1 and imperfect
information would be worth only about 5% of perfect
information.
The size of the highlighted region where imper-

fect information is worth at least �2× 100% of perfect
information decreases with the correlation coefficient.
Not only is EVI� always less than �EVI1 for non-
zero c, but it is often less than �2EVI1. In fact, if the
absolute value of c is greater than 0.612 (i.e., there is
at least a 73% chance that one alternative will out-
perform the other), then EVI�/EVI1 is less than �2 for
any level of correlation. Figure 4 presents this rela-
tionship as a function of the correlation coefficient and
the probability that one alternative will produce a bet-
ter outcome than the other. For example, if there is a
69% chance (a priori) that one alternative will outper-
form the other, as in our example, then information
systems with correlations less than 0.67 are worth less
than �0�67�2 × 100% of perfect information. This case
is identified by the small dot in Figure 4.

Figure 4 Sensitivity of TAXU VOI to Prior Uncertainty and Correlation
Coefficient
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5.2. TAXU-N Problem
The RVOI in the TAXU-N problem is

RVOI�

= VOI�
VOI1

=




ln
[
eck−k2/2�

(− c
�
+ k

�
1−�2

2

)+�
(
c
�
− k

�
1+�2

2

)]
ln�eck−k2/2��−c�+��c− k�

2c ≥ k ��x≥ v�

ln
[
�
(− c

�
+ k

�
1−�2

2

)+ e−ck+k2/2�
(
c
�
− k

�
1+�2

2

)]
ln���−c�+ e−ck+k2/2��c− k�

2c < k ��x < v��

(13)

which is a function only of the correlation coefficient
and the two fundamental ratios c and k. The value of
imperfect information relative to the value of perfect
information in the TAXU-N problem is completely
determined by the accuracy of the information sys-
tem (�), the divergence between the two alternatives
measured in units of standard deviation (c�, and the
ratio of the standard deviation to the DM’s risk toler-
ance �k�. The specific mean values of the alternatives,
their risk, or the DM’s risk tolerance are not deter-
mining factors.
Figure 5 plots constant RVOI� contours as a func-

tion of c and k for correlations of 0.5 and 0.9. The axis
where k = 0 is equivalent to the TALL-N results pre-
sented in Figure 3. The DM is indifferent along the
line where k= 2c. We see that when k > 0 (i.e., a risk-
averse DM), imperfect information is worth less than
�VOI1; a risk-averse DM will value a �-IS at less than
�× 100% of clairvoyance. However, a risk-preferring
DM �k < 0� may value a �-IS more highly than �VOI1,
as depicted by the region enclosed by the contours
equal to � in the lower left quadrant of each graph.
The highlighted region is the set of points �c� k� such
that imperfect information is worth at least �2VOI1
(this region was again found numerically). As with
the TALL-N problem, the size of this region decreases
with decreasing information-system accuracy.
The effect of changing risk attitude depends on

which side of the indifference line the DM starts.
For example, if the DM initially prefers a1 to a0,
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Figure 5 RVOI as a Function of the Coefficient of Divergence and Coef-
ficient of Relative Risk in the TAXU-N Problem
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then increasing risk aversion (decreasing R, increas-
ing k� will increase RVOI until the point of indiffer-
ence, beyond which further increases in risk aversion
will reduce RVOI. A similar argument can be made
regarding changes in the mean difference between the
two alternatives. Changes in the standard deviation
are more complex and encompass several cases:
Case 1: If both c and k are positive, then increasing

uncertainty will increase the RVOI if the DM initially
prefers the risky alternative and decrease it otherwise.
Case 2: If both c and k are negative, then increasing

uncertainty will decrease the RVOI if the DM initially
prefers the risky alternative and increase it otherwise.
Case 3: If c and k are of opposite sign, then the

effect of increasing uncertainty is indeterminate. For
example, if �= 0�9, � = 10, c =−1, and k = 0�1, then
the RVOI is 0.71 and increasing � to 15 increases the
RVOI to 0.77. If instead �= 0�9, � = 10, c=−0�1, and

k = 1, then the RVOI is 0.80 and increasing � to 15
decreases the RVOI to 0.76.
Despite the complexities, these effects can be sum-

marized as follows: moving the DM away from the
line of indifference �k = 2c� decreases the RVOI,
whereas moving the DM closer to the line of indiffer-
ence increases the RVOI.
Motivating Example: Returning to our example, we

have c = 0.5, k = 0.2, and VOIR0�5 = 0�26. This value
is depicted by the small dot in the lower panel of Fig-
ure 5. Taking the company’s risk aversion into account
increases the value of the survey from $0.84 million
(21% of EVI1� to $1.26 million (26% of VOI1�, which is
still less than its cost. Furthermore, the company could
use Figure 5 (or similar graphs) to understand how
changes in its estimates affect information value. This
sensitivity analysis is possible because the RVOI is a
dimensionless quantity and does not depend explic-
itly on the absolute model parameters, but rather on
their ratios as defined by c and k. Such a general graph
is not possible for VOI because this quantity depends
upon the specific model parameters.
Given a particular c, the RVOI will be maximized

when k = 2c; imperfect information is worth the most
relative to perfect information when the DM is indif-
ferent. Along the line k = 2c,

RVOI∗� =
(
VOI�
VOI1

)∗
= ln�2��−�c�

ln�2��−c�
� (14)

where the ∗ superscript denotes that this is the maxi-
mum RVOI for a particular c.8 This ratio is plotted in
Figure 6 and involves three intuitive limits:
As c → 0�RVOI∗� → �: This was shown in the

TALL-N problem, where RVOI� = � if both c and k

are 0. We cannot simply set c equal to 0 in Equa-
tion (14), implying that k is also 0, because our for-
mulation assumed that the DM’s risk tolerance was
finite (k �= 0).
As c → −	, RVOI∗� → 1: Negative values of c

imply negative risk tolerances along the line k = 2c.
Therefore, a risk-preferring DM could value imperfect
information almost as highly as perfect information if
the status-quo alternative is significantly better than
the risky alternative. For example, if c = −4 (which

8 The maximum value of imperfect information is equal to VOI ∗� =
−R ln�2��−�c�.
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implies k =−8), a risk-preferring DM would value a
0.8-IS at 99.9% of clairvoyance and a 0.6-IS at 98.8%
of clairvoyance. This extreme result obtains because
any information is almost worthless in this case; the
probability that the risky alternative is better than the
certain alternative is ��−4�≈ 0.
As c →	, RVOI∗� → �2: Positive values of c imply

positive risk tolerances along the line k = 2c. As c

approaches infinity, the limit of Equation (14) is inde-
terminate in its current form. Applying l’Hôpital’s
rule, we obtain the new limit

lim
c→	�

#��c�

#�c�
� (15)

where # is the normal hazard function. #(c) ap-
proaches c as c approaches infinity. Therefore, both
the limit in Equation (15) and RVOI∗� approach �2.
As discussed earlier, �2 is the proportional amount by
which knowledge of � reduces the variance of x̃ when
the regression of x̃ on �̃ is linear—as it is in TAXU-N.
Thus, within the context of the TAXU-N problem, a
risk-averse DM could value a �-IS based on its ability
to reduce the variance of x̃.
Motivating Example: The maximum RVOI in our

drilling example occurs when k = 2c = 1, instead of
k= 0�2. This value of k could be achieved by increas-
ing the company’s risk aversion (i.e., decreasing its
risk tolerance) or increasing the well’s uncertainty. At
this value of k (with c = 0�5 and � = 0�5), which is
represented by the small dot in Figure 6, the seismic
survey is worth approximately 46% of perfect infor-
mation or $1.86 million—again less than its cost of $2

Figure 6 The Maximum RVOI as a Function of the Coefficient of Diver-
gence in the TAXU Problem
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million. Since this is the most that any survey could
be worth with c= 0�5 and �= 0�5, the company’s risk
attitude is immaterial and the survey should not be
purchased.

6. Conclusion
Despite the absence of simple rules of thumb regard-
ing the value of imperfect information relative to
perfect information, we can provide decision mak-
ers with some guidance. For example, an information
system with correlation coefficient � will never be val-
ued by non-risk-preferring decision makers at more
than � × 100% of the value of perfect information.
In fact, an upper limit of �2 × 100% does not seem
to be unreasonable. This finding helps decision mak-
ers understand the importance of information-system
accuracy. For example, changing the accuracy of an
information system by a factor of $ will change its
value by a factor of $2.
If the DM wants to use a rule of thumb for valu-

ing imperfect information as a fraction of perfect
information, then he/she needs to understand that
this fraction varies greatly depending on the distance
between the alternatives. Figures 4 through 6 provide
the appropriate fraction and offer the possibility of
quickly estimating an information system’s value so
that a decision regarding more detailed modeling can
be made. For example, if the chance that one alter-
native is better than the other is at least 73%, then
the expected value of imperfect information is worth
at most �2 × 100% of the expected value of perfect
information.
While the model structure studied here is sim-

ple, it produces valuable and sometimes surprising
results. For researchers, it deepens our understand-
ing of information value in general and the relative
value of imperfect information in particular. For prac-
titioners, it provides guidance regarding the drivers
of information value and facilitates rough VOI esti-
mates. However, as evidenced by the mostly negative
results concerning the properties of VOI discussed at
the outset, great care must be taken in extrapolating
these results to different settings.
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Appendix

A1. Expected Value of Imperfect Information
Let a= �v−
�/����=−�−1c and b=	. The expected value
with imperfect information is∫ a

−	
vf ���d�+

∫ 	

a
�
+����f ���d�

= 1√
2'

∫ a

−	
ve−�1/2�z2 dz+ 1√

2'

∫ 	

a
�
+����e−�1/2��2d�

=v��a�+

1√
2'

∫ 	

a
e−�1/2��2 d�+��

1√
2'

∫ 	

a
�e−�1/2��2 d�

= v��a�+
�1−��a��−��
1√
2'

e−�1/2��2
∣∣∣∣
	

a

= v��a�+
�1−��a��+����a�

=
+����a�+ �v−
���a�

=
+����−�−1c�−�c��−�−1c��

The expected value of information is

EVI� =
+����−�−1c�−�c��−�−1c�−max�v�
��

If 
≥ v, then

EVI� = ����−�−1c�−�c��−�−1c�

= �����−�−1c�− c��−�−1c��

If 
< v, then

EVI� = 
+����−�−1c�−�c��−�−1c�− v

= −�v−
�−�c��−�−1c�+����−�−1c�

= �c−�c��−�−1c�+����−�−1c�

= �c�1−��−�−1c��+����−�−1c�

= �c���−1c�+�����−1c�

= ������−1c�+�−1c���−1c��

A2. Expected Utility with Perfect Information
Using the middle diagram in Figure 2, the expected utility
with perfect information is

u�VwPI� = u�−c� +
���−c�+
∫ 	

−c
u�z� +
�f �z�dz

= e−
/R

[
u�−c����−c�−sgn�R�
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To evaluate the integral, note the following:
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2 1√

2'

∫ 	

x
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2
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2
��−x− a��

Therefore,

u�VwPI�

= e−
/R

[
u�−c����−c�− sgn�R�

1√
2'

∫ 	

−c
e−�1/2�z2−��/R�z dz
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= e−
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= u�v���−c�− sgn�R�e−R−1�
−�2/�2R����c−R−1��

= u�v���−c�+u��x��1−��−c+ k��

A3. Value of Perfect Information
The value of perfect information is then

VOI1

=−R ln�−u�v���−c�−u��x��1−��−c+ k�−max�v� �x�
=−Rln�e−v/R��−c�−e−�x/R�1−��−c+k�−max�v� �x��

Note that the sgn�R� term cancels in the certain equivalent
formula.
If �x≥ v, then

VOI1 = −R ln�e−v/R��−c�+ e−�x/R�1−��−c+ k��− �x
= −R ln�e−v/R��−c�+ e−�x/R�1−��−c+ k��−R ln�e �x/R
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If �x < v, then

VOI1 = −R ln�e−v/R��−c�+ e−�x/R�1−��−c+ k��− v

= −Rln�e−v/R��−c�+e−�x/R�1−��−c+k��−Rln�ev/R
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= −R ln���−c�+ e�v−�x�/R�1−��−c+ k��

= −R ln���−c�+ e−ck+k2/2��c− k�
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A4. Expected Utility with Imperfect Information
Assume x̃ ∼N�
��� and �̃ ∼N�0�1�. If x̃ and �̃ are jointly
normally distributed, then the posterior mean and vari-
ance of x̃ given a signal � are 
� = 
 + ��� and �2

� =
�2�1 − �2�, respectively. Therefore, the posterior certain
equivalent of x̃ is �x� = 
 + ��� − �2�1 − �2�/2R. This cer-
tain equivalent will be greater than v as long as � >
����−1�v−
+�2�1−�2�/2R�. Let
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The expected utility with imperfect information is then
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The last integral follows for the same reasons discussed in
the previous section. The term in the second exponential
can be written as
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the expected utility with information can be expressed more
compactly as
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A5. Value of Imperfect Information
If �x≥ v, then
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Note: The factor sgn�R� cancels in the certain equivalent
formula.
If �x < v, then
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A6. TALL-N Solution
Let " = R−1. Assuming �x ≥ v and taking the derivative of
1+u�VOI�� with respect to ", we have

d

d"
�1+u�VOI���

=−sgn�"� d

d"

[
e−"v+"
−"2�2/2�

(
− c

�
+ "�

�

1−�2

2

)

+�

(
c

�
− "�

�

1+�2

2

)]

=−sgn�"�
[
�−v+
−"�2�e−"v+"
−"2�2/2�

(
− c

�
+ "�

�

1−�2

2

)

+e−"�v−
+"�2/2��

(
− c

�
+ "�

�

1−�2

2

)
�

�

1−�2

2

−�

(
c

�
− "�

�

1+�2

2

)
�

�

1+�2

2

]
�

As " → 0, this derivative approaches �����−1c�− �
− v� ·
��−�−1c�. Since d�1− e−"�/d" = e−" approaches 1 as " → 0,

lim
"→0

VOI� = EVI� = �����−1c�− �
− v���−�−1c�

= ������−1c�−�−1c��−�−1c��

The case �x < v is solved similarly.

A7. Expected Value of Imperfect Information Under
Lognormal Distribution
Suppose x̃ is lognormally distributed such that ln x̃ ∼
N�
′�� ′�. The mean of x̃ is 
= e


′+�� ′�2/2 and the variance
is �2 = �e��

′�2 − 1�e2
′+�� ′�2 . Following the same procedures
outlined above, one can show that the expected value of
imperfect information is

EVI�

=




v�

(
− c

�
− � ′

�

1−�2

2

)
−
�

(
− c

�
− � ′

�

1+�2

2

)

≥ v

−v�

(
c

�
+ � ′

�

1−�2

2

)
+
�

(
c

�
+ � ′

�

1+�2

2

)

< v�

where c = �
′ − lnv�/� ′. We see that in the lognormal case
EVI�/EVI1 is no longer a function solely of c and �.
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Correction
On page 119 of this article the text in the last paragraph was corrected to read:
Without loss of generality, we assume that the information signal is unit normal and therefore the conditional mean of x̃ given � is

E�x̃ � �=
+���, which will exceed v as long as � > �v−
�/����=−�−1c.


