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Discretization is a common decision analysis technique for which many methods are described in the lit-
erature and employed in practice. The accuracy of these methods is typically judged by how well they

match the mean, variance, and possibly higher moments of the underlying continuous probability distribution.
Previous authors have analyzed the accuracy of differing discretization methods across a limited set of distri-
butions drawn from particular families (e.g., the bell-shaped beta distributions). In this paper, we extend this
area of research by (i) using the Pearson distribution system to consider a wide range of distribution shapes
and (ii) including common, but previously unexplored, discretization methods. In addition, we propose new
three-point discretizations tailored to specific distribution types that improve upon existing methods.
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1. Introduction
In many decision analysis problems, uncertain quan-
tities of interest are represented by continuous
probability density functions (pdfs). To aid assess-
ment, analysis, or explanation, these pdfs are often
discretized into discrete probability mass functions
(pmfs). Specifically, suppose we are constructing a
decision model that takes as an input the continuous
random variable X (e.g., oil reserves). We approxi-
mate the pdf f 4x5, or F 4x5; the cumulative distribution
function (cdf) with a set of values xi ∈ X, i = 11
21 0 0 0 1N ; and associated probabilities pi ≡ p4xi5.
In most discretization methods, N is equal to three,
but five is not uncommon. The values, which can
be expressed as fractiles, or percentiles, of F 4x5, and
probabilities are selected such that desired properties
of X are preserved. The most natural and common
properties of interest are the raw and central moments
(e.g., the mean, variance, skewness, and kurtosis).

Several discretization methods are in common use.
For example, the extended Swanson–Megill (ESM)
(Keefer and Bodily 1983) method weights the 10th
(P10), 50th (P50), and 90th (P90) percentiles of F 4x5

by 0.300, 0.400, and 0.300, respectively, and is heavily
used within the oil and gas industry (Megill 1977,
Hurst et al. 2000, Rose 2001, Bickel et al. 2011).
Another common discretization is the “25–50–25”
method, which weights the P10, P50, and P90 by
0.250, 0.500, and 0.250, respectively, and is also heav-
ily used in the oil and gas industry. Companies tend
to be committed to only one of these two meth-
ods, although many other methods exist. Keefer and
Bodily (1983) (hereafter, KB) suggested treating the
mean-approximation formula of Pearson and Tukey
(1965) as a complete pmf and referred to this method
as the extended Pearson–Tukey (EPT) method. EPT
weights the P5, P50, and P95 by 0.185, 0.630, and
0.185, respectively. Additional discretizations and the
history of their development will be discussed in §2.

The many different discretization methods natu-
rally raise the question as to which method is best
in general or for a particular situation. Miller and
Rice (1983) showed that any discretization method
whose values are interval means will underestimate
the even moments of the underlying pdf. They pro-
posed a powerful moment-matching discretization
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method based on Gaussian quadrature (GQ) that with
n points, can match 2n moments of a pdf (assuming
that those moments are finite), including the zeroth
moment, which requires the probabilities to sum to
one. Smith (1993) described this method in detail and
compared it to several other methods. GQ should be
considered the “gold standard” because it can match
as many moments as desired. Yet, it is more difficult
to apply than the methods discussed here. Please see
Bickel et al. (2011) for GQ discretizations of common
distributions, including the uniform, normal, expo-
nential, triangular, and lognormal.

KB studied how well several discretization methods
and approximation formulae matched the mean and
variance of 78 bell-shaped beta distributions (labeled
as ∩-shaped) and found EPT to be the best. Keefer
(1994) examined the accuracy of approximating cer-
tain equivalents, which depend upon all the moments
of the underlying pdf, and considered a wider set
of 169 beta distributions (including the 78 consid-
ered by KB), covering symmetric and right- and left-
skewed ∩-shapes, and both right- and left-skewed
J -shapes, as well as four lognormal distributions.
Keefer’s (1994) analysis showed that EPT had the
lowest error across several levels of risk aversion,
including risk neutrality, in which case the certain
equivalent is simply the mean.

Development of three-point approximation formu-
lae for the mean and variance has also been pur-
sued in the Program Evaluation Review Technique
(PERT) literature. For example, Keefer and Verdini
(1993) and Johnson (1998, 2002) studied the accuracy
of existing three-point formulae, such as Pearson and
Tukey (1965), and developed new formulae for partic-
ular distributions, respectively. Although this work is
related to ours, it differs both in emphasis and scope.
Our goal is the development of discrete approxi-
mations to continuous distributions, not formulae to
approximate individual moments. In addition, rather
than limiting our study to particular distributions
such as the ∩-shaped beta or lognormal, we system-
atically consider a very wide range of distribution
shapes through the use of the Pearson1 (1895, 1901,
1916) distribution system, which was also used by
Pearson and Tukey (1965).

1 Karl Pearson (1857–1936) was the father of Egon Sharpe Pearson
(1895–1980), of Pearson and Tukey (1965).

In this paper, we (1) extend previous research by
considering a wider range of distributions, through
the use of the Pearson distribution system; (2) ana-
lyze discretization methods that have not been previ-
ously considered, but that are now in common use;
and (3) suggest several new discretizations that are
tailored to specific distribution families. These dis-
cretizations are similar in spirit to EPT, but are opti-
mized for a narrower set of distributions.

The remainder of this paper is organized as follows.
The next section describes the discretization methods
that we consider. Section 3 describes the Pearson dis-
tribution system, and serves as the foundation of our
work. Section 4 presents our analysis of existing dis-
cretization methods. Section 5 presents several new
discretization shortcut methods and analyzes their
performance. Section 6 provides recommendations for
practice and concludes.

2. Discretization Methods
We categorize discretization methods into shortcuts,
which do not depend upon the shape of the under-
lying pdf, and distribution specific, which do. Short-
cuts define a fixed set of percentiles to be used as
discretization values, requiring only those percentiles
to be known (or assessed). Distribution-specific meth-
ods, instead, may use different percentiles for dif-
ferent distributions, generally requiring that the full
distribution be known. This section summarizes and
discusses the development of the shortcuts and
distribution-specific methods that we analyze in this
paper.

2.1. Shortcuts
Pearson and Tukey (1965) tested many approxima-
tions that preserve either the mean or the variance of
the underlying pdf, across a set of distributions drawn
from the Pearson system. They settled upon a sym-
metric three-point approximation for the mean and
a system of equations to approximate the variance.
Later, KB suggested treating Pearson and Tukey’s
(1965) mean approximation as a full pmf, which is
more useful than a mean approximation in a decision
analysis context, and referred to it as the extended
Pearson–Tukey. As described in §1, EPT weights the
P5, P50, and P95 by 0.185, 0.630, and 0.185, respec-
tively. As a summary, we will write discretizations of
this form as (P5, P50, P95, 0.185, 0.630, 0.185).
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Roy Swanson proposed, in a 1972 internal Exxon
memo, that the mean of a lognormal distribution
can be approximated by weighting the P10, P50, and
P90 by 0.300, 0.400, and 0.300, respectively (Hurst
et al. 2000). Megill (1977) was the first to publish
“Swanson’s mean” and stressed that it should not
be used for highly skewed lognormal distributions.
KB suggested treating Swanson and Megill’s mean
approximation as a full pmf and called it extended
Swanson–Megill, to be used with many distribution
families, not just the lognormal. Recently, Bickel et al.
(2011) showed that ESM can be inaccurate for even
moderately skewed distributions and instead recom-
mended the use of GQ.

Miller and Rice (1983) introduced the use of GQ
(described in §2.2) to determine discretizations that
perfectly match the moments of the underlying pdf.
This method works well when the pdf is known to be
from a specified family. To address the case where the
underlying pdf is not from a known family, as might
be the case when one assesses a cdf directly from
an expert, Miller and Rice (1983) proposed the (P8.5,
P50, P91.5, 0.248, 0.504, 0.248) shortcut, known as the
Miller and Rice one-step (MRO). Given the similarity
of the MRO to the McNamee–Celona shortcut (MCS),
which we describe shortly, we do not analyze the
MRO in this paper. However, a MRO analysis is pro-
vided in the online supplement to this paper (avail-
able at http://dx.doi.org/10.1287/deca.1120.0260).

D’Errico and Zaino (1988) proposed, and Zaino and
D’Errico (1989) analyzed, two approximations based
on Taguchi’s (1978) experimental-design method. The
first (Zaino–D’Errico “Taguchi” (ZDT)) uses equal
weights (P11, P50, P89, 0.333, 0.333, 0.333). The sec-
ond (Zaino–D’Errico “Improved” (ZDI)) is a three-
point Gaussian quadrature for a normal distribution,
which is (P4.2, P50, P95.8, 0.167, 0.667, 0.167). Zaino
and D’Errico (1989) found that ZDI was more accu-
rate, in many situations, than ZDT, and we therefore
do not consider ZDT in this paper. However, an anal-
ysis of ZDT is included in the online supplement.

McNamee and Celona (1990) described another
shortcut that has come to be known as the McNamee–
Celona shortcut, or the “25–50–25” shortcut. The MCS
uses (P10, P50, P90, 0.250, 0.500, 0.250). It is based on
both the MRO and the application of a distribution-
specific method known as bracket mean (BMn).

Table 1 Summary of Shortcut Discretization Methods Considered in
This Paper

Shortcut Percentile points Probability weights

Extended Pearson–Tukey P5, P50, P95 0.185, 0.630, 0.185
Extended Swanson–Megill P10, P50, P90 0.300, 0.400, 0.300
McNamee–Celona shortcut P10, P50, P90 0.250, 0.500, 0.250
Zaino–D’Errico “Improved” P4.2, P50, P95.8 0.167, 0.667, 0.167

McNamee and Celona (1990) cautioned that the MCS
was only a first approximation in analyzing a decision
problem and that the distributions should be encoded
and discretized more carefully as the analysis pro-
gressed. This recommendation is not always followed
in practice (Bickel et al. 2011).

Table 1 summarizes the discretization shortcuts
considered in this paper. KB did not consider the
MCS or ZDI. Keefer (1994) considered all four of these
shortcuts (as well as the MRO and ZDT) and also
investigated a wider range of distributions than KB,
comprised of 169 beta and four lognormal distribu-
tions. However, as will be explained in §3, Keefer’s
analysis range is much narrower than what we con-
sider here.

2.2. Distribution-Specific Methods
Distribution-specific methods require specifying the
pdf (or the cdf) to be discretized, instead of only three
percentiles. We consider two discretization-specific
methods: bracket mean, also known as equal areas
(Bickel et al. 2011), and bracket median (BMd). BMn
was originally developed by Jim Matheson and his
colleagues (Bickel et al. 2011) at the Stanford Research
Institute between the late 1960s and the early 1970s.
Both methods horizontally divide the cdf into inter-
vals (three is common, but not necessary). These inter-
vals could be equal but seldom are in the case of BMn.
For example, the most common method is to divide
the cdf into intervals between the P100 and the P75,
the P75 and the P25, and the P25 and the P0. This pro-
duces a weighting of 0.25, 0.50, and 0.25, respectively.
BMd summarizes each interval with the conditional
median of that interval, whereas BMn uses the con-
ditional mean. Because these conditional distributions
are generally skewed, the median and the mean differ
and the two approaches may result in different dis-
cretizations. Applying the three-point BMn method
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with intervals of 0.25, 0.50, and 0.25 to the normal dis-
tribution yields the discretization (P12.5, P50.0, P87.5,
0.25, 0.50, 0.25). That this BMn discretization has the
same probabilities and similar percentiles as the MCS
lends additional support to the MCS.

We consider three- and five-point versions of
bracket median (BMd3 and BMd5) and bracket mean
(BMn3 and BMn5). In the case of BMd3, BMd5,
and BMn5, we divide the cdf into equal probability
intervals. In the case of BMn3, we follow standard
practice (McNamee and Celona 1991) and choose 25–
50–25 intervals. Of these four methods, KB considered
only BMd5.

3. The Pearson Distribution System
Several distribution systems that collectively define
sets of continuous distributions have been devel-
oped. The best known is the Pearson system, which
was described by Karl Pearson in a series of papers
(Pearson 1895, 1901, 1916).2 A distribution f 4x5 in
the Pearson system is a solution of the differential
equation

1
f

df

dx
=

b− x

c0 + c1x+ c2x
2
0 (1)

The four parameters in Equation (1), b, c0, c1, and c2,
determine the first four moments of the associated
pdf. Together, within the Pearson system, the third
and fourth moments determine a unique location-
scale distribution (see, for example, Elderton and
Johnson 1969).

This latter fact allows distributions in the Pearson
system to be conveniently characterized by their
shape, which is defined by their skewness �1 and
kurtosis �2 (the third and fourth central moments,
respectively). Because skewness can be positive or
negative, but is symmetric under reflection, it is
convenient to consider squared skewness, �1 = �2

1 .

2 Other distributions systems include those by Johnson (1949), Burr
(1973), Ramberg and Schmeiser (1974), Schmeiser and Deutsch
(1977), and Butterworth (1987). We do not use these systems for
a variety of reasons. Johnson’s (1949) system does not reduce to
as many common distributions as Pearson’s. Burr’s (1973) system
and Schmeiser and Deutsch’s (1977) system each have only a single
range of support, versus the three of Pearson’s system. Ramberg
and Schmeiser’s (1974) system covers a smaller range of shapes
than Pearson’s. Butterworth’s (1987) system only approximates sev-
eral of the named distributions included in the Pearson system.

Figure 1 Pearson Distribution System
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Figure 1 shows a portion of the Pearson system,
denoting several regions, or classes of distributions.
The �1 and �2 axes are not bounded above. The ver-
tical axis denoting kurtosis is inverted following the
tradition of previous work.

The Pearson system includes all possible combina-
tions of skewness and kurtosis, which Pearson (1916)
showed must have

�2 ≥ �1 + 10 (2)

The region above the line �2 = �1 + 1 is shaded and
labeled as the “Impossible area” in Figure 1. Although
the Pearson system covers all possible 4�11�25 pairs,
it does not include all possible pdfs, most notably
the lognormal (included in the Johnson 1949 system).
However, as highlighted in Figure 1, many common
distributions are special cases, including the beta,
uniform, normal, exponential, gamma, and inverse
gamma.

Lau et al. (1998) (hereafter, LLH) used a combina-
tion of the Pearson system and three others (Johnson
1949, Ramberg and Schmeiser 1974, Schmeiser and
Deutsch 1977) to design and evaluate several mean-
approximation formulae over the parameter range
�1 < 41 �2 < 9. We use a similar but slightly larger
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range, �1 < 41 �2 < 10, to increase coverage of kurtosis
and include more of the distributions considered by
Pearson and Tukey (1965). This range is arbitrary, but
through experimentation we determined that increas-
ing this range by 50% in each dimension does not
change our conclusions. The Pearson system is a con-
venient and natural choice because of its direct rela-
tion to named distributions over much of the feasible
4�11 �25 region, its flexibility in distribution shape and
support, and general ease of use as compared to other
systems.

Three main types of distributions cover the feasi-
ble region, which Pearson designated Type I, Type IV,
and Type VI. Pearson defined nine additional types,
which are special cases of the main three or transi-
tion boundaries between them. For example, Types III
and V are the gamma and inverse gamma distribu-
tions, respectively. The normal distribution is a special
case, where Types I, II (not shown), III, IV, V, and VI
intersect.

The distributions in Figure 1 that were consid-
ered by both KB and Keefer (1994) are denoted by
grey circles, as shown in the figure’s legend. Distri-
butions considered by Keefer (1994), but not by KB,
are denoted by black circles. Both KB and Keefer
(1994) considered a relatively small sample of distri-
butions within the Pearson system, being confined to
∩-shaped beta (Type I) distributions with low skew.
Keefer (1994) expanded this somewhat, but limited
the analysis to beta distributions along the transition
between the ∩-shaped and J -shaped betas regions and
four lognormal distributions. The possible 4�11�25

points for the lognormal fall within the Pearson Type
VI region, and although the lognormal distribution is
not included in the Pearson system, our analysis of
this region covers distributions of similar shape.

The distributions Pearson and Tukey (1965) used
to construct their mean- and variance-matching for-
mulae are shown as black diamonds in Figure 1.
Although 11 of the 96 points they used fall outside
the area of Figure 1, these points are sparsely dis-
tributed over a range of kurtoses from 10 to 20 and
are inconsistent with the denser spacing of the rest
of their grid. Pearson and Tukey’s (1965) analysis did
not fully explore the Pearson system, because it was
limited to the tables of Pearson distributions that were
available at the time.

We now briefly describe the three main Pearson dis-
tributions and two transition distributions in the top-
to-bottom order in which they appear in Figure 1. The
distributions in the Pearson system are location-scale
generalizations, but we give the standard forms of the
distributions, which are equivalent under an appro-
priate shifting and scaling of x.

3.1. Pearson Type I (Beta Distribution)
Type I corresponds to the beta distribution, with pdf

fI 4x5=
1

B4�1�5
x�−141 − x5�−11 0 < x < 11 (3)

where � and � are parameters and B4�1�5 is the beta
function. Pearson (1895) characterized this type as
having skewness and limited range. This type arises
when the denominator of Equation (1) has roots with
opposite signs. The beta can be ∩-shaped (� ≥ 11
� ≥ 15, J -shaped (� ≥ 11� < 1 or � < 11 � ≥ 15, or
U -shaped (� < 11� < 15. We denote these shapes as
Types I-∩, I-J, and I-U, respectively. When a beta dis-
tribution is J -shaped, the value of f approaches infin-
ity as x approaches 0 (when � ≥ 11� < 15 or 1 (when
�< 11� ≥ 15. When it is U -shaped, f goes to infinity
at both 0 and 1. Type I-U is the only Pearson type
that is not unimodal. The symmetric Type I is called
Type II and lies along the �2 axis (not shown) between
kurtoses 1 and 3. The uniform distribution is the point
4�1 = 01�2 = 1085, which is also the point where the
three regions of Type I meet.

3.2. Pearson Type III (Gamma Distribution)
Type III, or the gamma distribution, is a transition
distribution that forms the boundary between Type I
and Type VI in Figure 1. It has pdf

fI I I 4x5=
1

�kâ4k5
xk−1e−x/�1 0 ≤ x <�1 (4)

where â4k5 is the gamma function, and k and � are
parameters. This type occurs when b2 = 0 in Equa-
tion (1). At the point where this type intersects with
the line that divides the ∩-shape and J -shape Type I
regions, is the exponential distribution, or Type X.

3.3. Pearson Type VI (Beta Prime Distribution)
Type VI corresponds to the beta prime distribution,
also called the inverted beta distribution or the beta
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distribution of the second kind. For parameters �
and �, the pdf is

fVI 4x5=
x�−141 + x5−�−�

B4�1�5
1 0 < x <�0 (5)

Pearson (1901) characterized this distribution as being
unbounded in one direction. As seen in Figure 1,
Type VI covers the region between the gamma and
inverse gamma distributions, each of which also have
this property. Type VI distributions are the solution
to Equation (1) when its denominator has roots of the
same sign.

3.4. Pearson Type V (Inverse Gamma
Distribution)

Type V is the second transition type that separates the
regions of Type IV and Type VI and is known as the
inverse gamma distribution. For parameters � and �,
it has pdf

fV 4x5=
��

â4�5
x−�−1e−�/x1 0 < x <�0 (6)

This type occurs when the roots of Equation (1) are
real and equal.

3.5. Pearson Type IV
Type IV does not correspond to any single common
distribution. For parameters m and v, the pdf is

fIV 4x5= y041 + x25−me−v tan−14x51 −�< x <�1 (7)

where y0 is a normalizing factor (see Elderton and
Johnson 1969). Pearson (1895) characterized this type
as being unbounded in both directions and possibly
having skewness. It is the solution to Equation (1)
that arises when the denominator has complex roots.
A special case when Type IV is symmetric 4�1 = 01
�2 > 35 is Student’s t-distribution, which Pearson
(1916) called Type VII.

4. Discretization Accuracy
As discussed in §3 and shown in Figure 1, KB consid-
ered a small portion of the Type I-∩ (∩-shaped beta)
distributions when analyzing the accuracy of three-
point approximations, including EPT and ESM. This
section extends their analysis by using the Pearson
system to consider a wider range of distribution
shapes and support types. In addition, we consider
the MCS, ZDI, BMd, and BMn methods.

4.1. Methodology
We construct a grid of approximately 2,800 points
covering the feasible region shown in Figure 1, spaced
0.1 in each dimension. LLH used 1,000 uniformly dis-
tributed points over a slightly smaller region, whereas
Pearson and Tukey (1965) used a grid of 96 points, as
described in §3 and shown in Figure 1. Without loss
of generality, we consider only positively skewed, or
right-skewed, distributions. With the mean and vari-
ance normalization we discuss next, the direction of
skew does not affect the error.

For each distribution represented by a point in our
grid, we construct the discretization and measure the
error between the mean and variance of the discretiza-
tion and the actual mean and variance, respectively,
of the associated distribution. The shortcut methods
and BMd require only that points be taken from the
cdf, whereas BMn requires the computation of con-
ditional means, and entails numerically integrating
regions of the pdfs given in §3. Numerical integration
introduces numerical error, but this error will turn out
to be negligible.

4.2. Analysis of the Beta Distribution
To illustrate our technique, we begin by benchmark-
ing it against the results of KB, who focused on
Type I-∩. KB measured performance by considering
four error measures: average absolute error (AAE),
average absolute percentage error (AAPE), maxi-
mum error (ME), and maximum percentage error
(MPE). ME and MPE give the error with the great-
est magnitude, regardless of sign. For these two mea-
sures, positive error indicates that the discretized
moment is larger than the actual moment. We define
these error measures as follows: Let Dr denote the
indexed set of distributions corresponding to region
r ∈ 8I-∩1 I-J, I-U, III, IV, V, VI9. The number of points
that we sample in this region is sr . For a distribution
index i ∈ Dr , the true kth moment is mk

i , the estimate
from a discretization is m̂k

i , and the error in the kth
moment is �k

i = 4m̂k
i − mk

i 5. Table 2 provides the for-
mulae for error measures considered by KB.

In Table 3, we report the results for the I-∩ distri-
butions, in the same manner as KB. A selection of
KB’s results is repeated in Table 4 for comparison.
Although each of EPT, ZDI, BMn3, and BMn5 has at
least one measure of “0.000” for the mean in Table 3,
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Table 2 KB Error Measures

Error statistic Formula

Average absolute error
1
sr

∑

i∈Dr

��ki �

Average absolute percentage error
1
sr

∑

i∈Dr

∣

∣

∣

∣

�ki
mk

i

∣

∣

∣

∣

· 100%

Maximum error �kj 1 j = arg max
i∈Dr

��ki �

Maximum percentage error
�kj

mk
j

· 100%1 j = arg max
i∈Dr

∣

∣

∣

∣

�ki
mk

i

∣

∣

∣

∣

they are not exactly equal to zero. The highlighted
cells show the most accurate shortcut (top rows of
Table 3) and the most accurate distribution-specific
method (bottom rows of Table 3) for each measure. As
noted by KB, EPT performs very well. ZDI has com-
parable performance to EPT and is better than ESM.
BMd performs rather poorly. The BMn3 and BMn5
methods perfectly match the mean (with negligible
numerical error), but are not as accurate as EPT in
matching the variance. The errors for the MRO and
ZDT are given in the online supplement.

All of the error measures are increased relative to
KB’s results because of our expanded distribution set.
For example, EPT’s AAPEs in the mean and the vari-
ance are about three times larger in our case than in
the case reported by KB (0.066% compared to 0.020%).
In addition, our expanded analysis demonstrates that
EPT outperforms ESM more than was found by KB.
For example, in our case, ESM’s AAPE is about five
times as large as EPT’s, whereas KB found that it was
only about two and one-half times as large.

BMn, in theory, matches the means of all of the
distributions considered, but in practice the integrals
involved in computing the conditional means often
can be evaluated only using numerical integration
methods, which introduces numerical error. However,
good numerical integration software will generally
produce negligible errors,3 which, in our case, are sev-
eral orders of magnitude smaller than the best dis-
cretization errors. Also, in practical application, GQ
will often have small numerical errors.

3 We used numerical integration algorithms included in the Math-
ematica 8 software package.

4.3. Expanded Distribution Set Using
Pearson’s System

We turn now to the expanded set of distributions
from the Pearson system. The beta distribution has
the property that F 4�1�5= 1− F 4�1�5. However, per-
centage error does not follow this relation for non-
standardized beta distributions and introduces bias,
as pointed out by LLH. LLH standardized each dis-
tribution to have unit mean and unit standard devi-
ation. This practice, which we follow, eliminates the
bias and allows for consistent comparison of errors
between distributions with different support ranges
(e.g., the Beta (Type I) and Beta Prime (Type VI)).

4.3.1. Error of Discretization Shortcuts. For each
of the discretization shortcuts considered in this
paper, we plot the absolute errors in the mean ��1

i � and
variance ��2

i � over the entire region in Figure 1. Error
in the mean is shown in Figure 2, and error in the
variance in Figure 3. The MRO and ZDT error plots
are included in the online supplement.

These plots quantify the performance of the vari-
ous methods as a function of distribution shape. The
contours and error magnitude ranges are standard-
ized separately for the mean and variance through-
out the error plots. Absolute error in the mean is
shown to vary from 0 to 0.15, and in the variance
from 0 to 0.5 (with our �= � = 1 normalization, these
are equivalent to 0%–15% and 0%–50% error ranges,
respectively), with darker shading indicating higher
absolute error. Black areas in the plots indicate where
the errors are greater than the upper bound.

With the exception of Type I-U, and I-J in the case of
ZDI, EPT and ZDI perform well over most of the plot
area. ESM displays greater errors than EPT and ZDI
over Types I-U and I-J, and portions of the Type IV, V,
and VI distributions. The MCS results in the highest
error levels among the four shortcut methods. It per-
forms well for the normal distribution, on which it is
based, but its error increases rapidly with skewness.
Both ESM and the MCS display significantly higher
error sensitivity to distribution shape than either EPT
or ZDI, and error generally increases with kurtosis
and skewness. However, the MCS is much more sen-
sitive to skewness than ESM because the MCS places
less weight on the P10 and P90. ESM clearly outper-
forms the MCS for Type I-∩, III, IV, V, and VI distribu-
tions. All of the shortcut methods produce large errors
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Table 3 Results for Expanded Set of I-∩ (Beta) Distributions (Discretized Minus Actual Mean and
Variance)

Mean Variance

AAE AAPE ME MPE AAE AAPE ME MPE

I-∩ (Beta)
Shortcuts methods

EPT 00000 00066 −00001 −00178 00000 10096 −00008 − 100090
ZDI 00000 00152 −00002 −00589 00000 10189 −00013 −160094
ESM 00001 00331 00004 10419 00001 70776 00013 −190960
MCS 00002 20255 −00005 −40852 00002 200384 − 00005 −320051

Distribution-specific methods
BMd3 00005 50124 −00012 −100494 00004 400390 −00012 −530752
BMd5 00003 30027 −00006 −60390 00002 250961 −00007 −380402
BMn3 00000 00000 00000 00000 00002 220201 −00013 −290199
BMn5 00000 00000 00000 00000 00001 130042 −00004 −200526

Note. Shaded areas are the most accurate shortcuts (top) or distribution-specific methods (bottom).

Table 4 Selected Results from KB (Discretized Minus Actual Mean and Variance)

Mean Variance

AAE AAPE ME MPE AAE AAPE ME MPE

I-∩ (Beta)
EPT 00000 00020 00000 00070 00000 00460 −00001 −10600
ESM 00000 00050 00001 00330 00000 20700 00006 110100
BMd5 00001 00750 −00004 −30350 00002 210500 −00006 −300200

Note. Shaded areas are the most accurate methods.

within the I-U region, which is a strong indication that
they should not be used for this Pearson type.

As shown in Figure 3, error in the variance
increases distinctly with kurtosis, i.e., as the tails of
the distributions get “fatter.” EPT and ZDI are more
sensitive to changes in skewness than either ESM or
the MCS. However, with the exception of Type I-U,
EPT and ZDI generally match the variance better than
either ESM or the MCS. This undoubtedly stems from
the fact that both EPT and ZDI’s percentiles capture
more of the tail effects than do ESM’s and the MCS’s
P10 and P90 percentiles.

EPT and ZDI perform similarly over the Type I
region, but ZDI more accurately matches the variance
for Type IV, V, and VI distributions. The similarity
in the EPT and ZDI errors is expected, considering
the similarity of these methods’ percentiles and prob-
abilities. ZDI performs better over the Type IV dis-
tributions in Figure 3, perhaps because it is a GQ
for the normal distribution, which is unbounded, as
are the distributions in this region. Additionally, the
formula used to derive EPT was designed by Pearson
and Tukey (1965) based on performance over shapes

mostly located in the Type I and VI regions (see
Figure 1).

Although ESM’s performance is rather poor, it is
superior to that of the MCS. For example, although
ESM misestimates the variance of Type I-∩ in the mid-
dle of our plots (�1 = 2 and �2 = 5) by about 10%, the
MCS’s error rate is 25%.

Before summarizing these results by Pearson type,
as in Table 3, we introduce two new error measures:
the average error (AE) and the average squared error
(ASE), given in Table 5. The errors �k

i and percent-
age errors �k

i /m
k
i are the same for the standardized

distributions.
Table 6 summarizes our results using only the

AE, ASE, and ME for each of the main Pearson
types (I, VI, and IV) over the skewness–kurtosis
range depicted in our Pearson plots. Again, the dif-
ference between these types is their support range.
As before, the best measures are highlighted for
each distribution type. In Table 6, ASE’s results are
shown in scientific notation rather than rounded to
three decimal places, because many would round to
0.000. These results identify the method that performs
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Figure 2 Errors in the Mean for Each Discretization Shortcut Method
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best, when performance is averaged over a given
distribution region. Errors and discussion for transi-
tion Types III and V, and the MRO and ZDT shortcuts,
are included in the online supplement.

Either EPT or ZDI performs best for Type I-∩, IV,
and VI distributions. These conclusions are consistent
with the error plots of Figures 2 and 3. The I-U
distribution is the only type for which the MCS
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Figure 3 Errors in the Variance for Each Discretization Shortcut Method
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Squared skewness �

performs best by any measure. ESM outperforms EPT
only for the Type I-J variance and is the only case
where ESM is best. All four shortcuts tend to under-
estimate the mean and variance for Types VI and IV,
and both have at least one unbounded tail.

These results indicate that the method that is best
at matching the mean is not necessarily the best at
matching the variance. This is particularly apparent
with EPT for Types I-J and VI. However, in these cases,
EPT’s variance-matching accuracy is nearly as good
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Table 5 Additional Error Measures

Error statistic Formula

Average error
1
sr

∑

i∈Dr

4�ki 5

Average squared error
1
sr

∑

i∈Dr

4�ki 5
2

as the accuracy of the shortcut that best matches the
variance. Although EPT was designed to approximate
only the mean, it preserves the variance better than, or
nearly as well as, any of the shortcut methods.

Based on this analysis, we conclude that EPT is gen-
erally the best shortcut method for matching the mean
and variance. ZDI’s performance improvement over
EPT for beta prime and Type IV is seldom signifi-
cant. None of these shortcuts should be used for Type
I-U distributions. Next, we analyze the distribution-
specific methods.

4.3.2. Error of Distribution-Specific Discretiza-
tions. Because the BMn methods exactly match
the mean, Figure 4 only presents BMd’s error in

Table 6 Shortcut Method Errors for Main Pearson Types (Discretized Minus Actual Mean and
Variance)

Mean Variance

AE ASE ME AE ASE ME

I-U (Beta)
EPT −00041 1.15E−02 −00412 00214 1.05E−01 00579
ZDI −00082 1.63E−02 −00450 00154 8.84E−02 −00614
ESM 00153 3.64E−02 00449 00304 1.29E−01 00800
MCS 00040 1.11E−02 00302 00155 5.61E−02 00607

I-J (Beta)
EPT − 00004 9.46E−05 −00044 00100 2.02E−02 00405
ZDI −00017 4.87E−04 −00071 00120 2.58E−02 00441
ESM 00034 1.68E−03 00096 − 00067 1.39E−02 −00212
MCS −00035 1.36E−03 −00051 −00197 4.58E−02 −00330

I-∩ (Beta)
EPT 00001 9.75E−07 −00003 −00003 2.23E−04 −00101
ZDI −00002 6.05E−06 −00008 00000 4.25E−04 −00161
ESM 00004 4.06E−05 00019 −00053 8.73E−03 −00200
MCS −00030 1.05E−03 −00050 −00204 4.53E−02 −00321

VI (Beta Prime)
EPT − 00001 8.92E−07 −00002 −00045 2.32E−03 −00076
ZDI −00001 2.03E−06 − 00002 −00021 5.89E−04 −00048
ESM −00006 4.46E−05 −00012 −00166 2.93E−02 −00221
MCS −00042 1.84E−03 −00051 −00298 9.01E−02 −00341

IV
EPT −00002 1.62E−05 00003 −00068 5.18E−03 −00104
ZDI − 00001 1.61E−06 00007 − 00047 2.51E−03 −00078
ESM −00007 6.01E−05 00012 −00173 3.12E−02 −00224
MCS −00022 6.09E−04 00044 −00309 9.66E−02 −00353

Note. Shaded areas are the most accurate for specific Pearson types.

estimating the mean. The contour levels are the same
as those in Figure 2. BMd3 and BMd5 produce sig-
nificant errors over most of the region we consider.
This occurs because the conditional distributions are
skewed, and therefore the conditional median is not
equal to the conditional mean. Below the Type I-J
region, error increases with skewness. Adding more
points clearly improves the performance of BMd,
although it is still inferior to the shortcut methods.
For example, BMd5’s performance resembles that of
the MCS, but it is still slightly worse.

Figure 5 shows the variance-error plots for each
of the BMd and BMn methods. The contour levels
are the same as those in Figure 3. Error in the vari-
ance is primarily a function of kurtosis. BMd’s per-
formance is especially poor, although error is reduced
by adding more discretization points. Yet, even a
five-point BMn can underestimate the variance of low-
skew Type I-∩ distributions by more than 10%. This
suggests that a different discretization approach may
be needed if preserving the variance is important.
Even though BMd and BMn are tailored to the
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Figure 4 Errors in the Mean for Bracket Median Methods
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underlying distribution, the errors in the variance for
each of these methods, over most of the region we
consider, are significantly larger than those for EPT
and ZDI. However, the BMn methods exhibit more
gradual increases in error in and around the Type I-U

region than do the shortcut methods. These results,
averaged over our regions of interest, are summarized
by distribution type in Table 7. Again, the errors for
Types III and V for the distribution-specific methods
are included in the online supplement.

As expected, the BMn methods are superior to
both BMd and the shortcuts in matching the mean.
Table 7 indicates that all of the numerical integration
errors for the BMn methods average less than 10−3

and are generally several orders of magnitude smaller
than the discretization errors for the BMd and short-
cut methods. However, BMn systematically underes-
timates the variance, a general result that Miller and
Rice (1983) proved. Here we show that the errors can
be quite significant and are dependent on shape.

Except for Type I-U distributions, BMn results in
larger errors in the variance than do the best short-
cuts shown in Table 6. However, Table 7 and Figure 5
imply that the BMn errors are far less sensitive to
distribution shape than are those for the shortcut
methods, which, as seen in Figure 3, vary widely
depending on distribution shape and type.

5. Best Mean Approximations by
Pearson Type

LLH found three-, five-, and seven-point mean-
approximation formulae by finding, for a given set of
percentiles, the probabilities that minimize the aver-
age squared error over the entire set of distributions
(i.e., all the Pearson types). Here, we use a simi-
lar approach to find three-point mean approximation
formulae for individual regions of the Pearson sys-
tem. The primary distinction among the three major
regions (i.e., I, VI, and IV) of the Pearson system is
their range of support: Type I is bounded in both
directions, Type VI is unbounded in one direction,
and Type IV is unbounded in both directions. This
basic characteristic of uncertainty is often easy to
determine, allowing one to focus on a particular Pear-
son region and thereby choose the best shortcut.

LLH found their three-point approximations by
solving

min
p11 p2

1
n

n
∑

i=1

4m̂1
i −m1

i 5
2

s.t. m̂1
i = p1F

−1
i 4�15+ p2F

−1
i 40055+ p3F

−1
i 4�351

i = 11 0 0 0 1n1
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Figure 5 Errors in the Variance for Distribution-Specific Discretization Methods
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p1 + p2 + p3 = 11

p3 = p11

�3 = 1 −�11

0 ≤ p11 p21 p3 ≤ 10

This procedure yields a symmetric discretization, i.e.,
where p3 = p1 and �3 = 1 − �1. LLH found that for
�1 = 0005, the best three-point mean-approximation
formula is (P5, P50, P95, 0.179, 0.642, 0.179). This
shortcut has very similar probabilities to EPT (P5, P50,
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Table 7 Distribution-Specific Method Errors for Main Pearson Types (Discretized Minus Actual Mean and
Variance)

Mean Variance

AE ASE ME AE ASE ME

I-U (Beta)
BMd3 −00020 9.23E−03 −00335 −00288 1.78E−01 −00982
BMd5 00004 1.45E−03 00156 − 00007 1.82E−02 00371
BMn3 00000 1.18E−10 00000 −00207 4.90E−02 −00446
BMn5 00000 1.19E−10 00000 −00103 1.29E−02 −00262

I-J (Beta)
BMd3 −00097 9.84E−03 −00121 −00466 2.27E−01 −00616
BMd5 −00051 2.74E−03 −00068 −00284 8.73E−02 −00395
BMn3 00000 8.63E−12 00000 −00248 6.27E−02 −00299
BMn5 00000 7.62E−12 00000 − 00156 2.58E−02 −00212

I-∩ (Beta)
BMd3 −00068 5.35E−03 −00108 −00404 1.69E−01 −00538
BMd5 −00040 1.88E−03 −00066 −00260 7.21E−02 −00384
BMn3 00000 8.69E−14 00000 −00222 5.04E−02 −00292
BMn5 00000 4.48E−14 00000 − 00130 1.84E−02 −00205

VI (Beta Prime)
BMd3 −00087 7.74E−03 −00111 −00504 2.55E−01 −00549
BMd5 −00055 3.06E−03 −00068 −00357 1.29E−01 −00401
BMn3 00000 4.01E−14 00000 −00271 7.37E−02 −00309
BMn5 00000 1.69E−14 00000 − 00185 3.48E−02 −00230

IV
BMd3 −00042 2.20E−03 00084 −00508 2.59E−01 −00548
BMd5 −00028 9.54E−04 00055 −00366 1.35E−01 −00409
BMn3 00000 6.34E−09 00000 −00262 6.87E−02 −00287
BMn5 00000 3.47E−12 00000 − 00180 3.28E−02 −00205

Note. Shaded areas are the most accurate distribution-specific methods for specific Pearson types.

P95, 0.185, 0.630, 0.185), which also was constructed
using points in similar areas of the 4�11�25 plane.
However, LLH more densely covered this area, par-
ticularly the Type IV region.

5.1. EPT Extensions
Both Pearson and Tukey (1965) and LLH consid-
ered a limited set of symmetric discretizations. LLH
considered four sets of percentiles 4�1 = 0001100051
0010100255 based on the probability elicitation litera-
ture. Pearson and Tukey (1965) investigated a differ-
ent set of percentiles 4�1 = 0000510001100025100055. In
this section, we vary �1 over a larger, more complete
set of percentiles, from P1 to P20 in increments of 1%,
first maintaining that the discretization must be sym-
metric, and then relaxing this requirement. Because
these shortcuts extend Pearson and Tukey (1965), we
refer to them as “EPT+” discretizations and add an
identifier that specifies the Pearson region for which
a specific discretization is optimized.

For each set of percentiles, we find the probabilities
that minimize the ASE. The error-minimizing shortcut
discretizations for the Type I, IV, and VI distributions
are given in Table 8 (please see the online supple-
ment for the Type III and Type V EPT+ shortcuts).
For some of these shortcuts, as well as those in the
tables presented later, the fitted probabilities did not
sum to one after rounding to three decimal places,
but were minimally adjusted to do so. The adjust-
ment was accomplished by successively adding 0.001
to the rounded probabilities in the descending order
of the amount lost to rounding (if the probability
was rounded down) until the probabilities summed
to one. These shortcut methods are new, both in the
procedure we use to find them and by their tailoring
to specific types of distributions within the Pearson
system.

In Table 8, the EPT1∩+ shortcut uses the same per-
centiles and probabilities (rounded to three decimal
places) as EPT. This is due, in part, to Pearson and
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Table 8 Symmetric Type-Specific Discretization Shortcuts (EPT+

Methods)

Distribution type Percentile points Respective probabilities

I-U Beta (EPT1U+5 P15, P50, P85 0.296, 0.408, 0.296
I-J Beta (EPT1J+5 P6, P50, P94 0.203, 0.594, 0.203
I-∩ Beta (EPT1∩+5 P5, P50, P95 0.184, 0.632, 0.184
VI Beta Prime (EPT6+5 P4, P50, P96 0.164, 0.672, 0.164
IV (EPT4+5 P6, P50, P94 0.212, 0.576, 0.212

Tukey’s (1965) heavy sampling of this region. EPT6+

uses the same percentiles and almost exactly the same
probabilities as ZDI, perhaps because these distribu-
tions are unbounded above, and ZDI is the Gaussian
quadrature for the normal distribution. The EPT1U+

and EPT4+ shortcuts do not resemble those of any of
the preexisting shortcuts that we consider, although
EPT1U+ uses almost exactly the same probabilities as
ESM, and the EPT4+ probabilities are similar to those
of the MCS. Plots of the absolute errors in the mean
and variance for each of the shortcuts discussed in §5
are included in the online supplement.

We now relax the constraint that the discretiza-
tions must be symmetric, but we still require that one
point be the P50. We again consider values for the
lower (upper) percentiles from P1 (P99) to P20 (P80)
in increments of 1%. The ASE-minimizing discretiza-
tions, which we refer to as the “EPT++” shortcut
methods, are shown in Table 9 (please see the online
supplement for the Type III and Type V EPT++ short-
cuts). The Type I-∩ and VI shortcuts have nearly the
same percentiles and probabilities as the symmetric
shortcuts in Table 8, implying that three points (that
include P50) would not better approximate these pdfs.
The Type I-J and IV shortcuts are similar to their sym-
metric counterparts in their percentiles and probabili-
ties. Only Type I-U is significantly altered by allowing
for asymmetry. Thus, it appears that very little accu-
racy will be gained without increasing the number
of points or allowing the middle point to change
from P50.

The skewed distributions we consider in this sec-
tion all have positive skewness, which results in dis-
cretizations with more extreme upper percentiles for
some distribution types (i.e., the upper percentile �3

is farther from the median than is the lower per-
centile �15. The upper percentile of the Type IV
shortcut, for example, is slightly more extreme than

Table 9 Nonsymmetric Type-Specific Discretization Shortcuts
(EPT++ Methods)

Distribution type Percentile points Respective probabilities

I-U Beta (EPT1U++5 P1, P50, P85 0.216, 0.491, 0.293
I-J Beta (EPT1J++5 P2, P50, P94 0.184, 0.615, 0.201
I-∩ Beta (EPT1∩ ++5 P5, P50, P95 0.184, 0.632, 0.184
VI Beta Prime (EPT6++5 P4, P50, P96 0.164, 0.672, 0.164
IV (EPT4++5 P7, P50, P94 0.231, 0.551, 0.218

the lower percentile, and corresponds specifically to
the “thicker” upper tail. If the distribution is left
skewed, then the lower percentile should be more
extreme to match that tail. Therefore, the shortcuts
will need to be accordingly reflected for left-skewed
distributions. For example, the shortcut for a right-
skewed Type IV is (P7, P50, P94, 0.231, 0.551, 0.218),
but for a left-skewed Type IV, the shortcut would
become (P6, P50, P93, 0.218, 0.551, 0.231).

Figure 6 shows which of EPT, EPT+, and EPT++

best matches the mean or variance for specific distri-
butions. Tailoring EPT+ and EPT++ to specific dis-
tribution types in most cases improves performance
in matching the mean. No one shortcut dominates the
others over any entire region, and the shortcut most
accurate in the mean of a distribution is often not the
most accurate for that distribution’s variance.

This improvement in the mean, but in some cases
degraded performance in the variance, is a result of
our procedure considering only error in matching the
means of a set of distributions, without consideration
of the variance. One could consider some weighting
of the mean and the variance to develop other approx-
imations. Indeed, Keefer’s (1994) study considers all
the moments via the computation of a certain equiv-
alent. However, developing a shortcut method that
preserved certain equivalents would require knowl-
edge of the decision maker’s utility function, which
is likely to differ widely across decision makers and
decision situations.

5.2. Standard Percentile Discretizations
The P10, P50, and P90 percentiles have become
so common in practice that displacing them with
other percentiles may be difficult. For example, the
two most common shortcuts, ESM and MCS, both
use these percentiles. Therefore, in this section, we
find the best three-point discretizations using these
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Figure 6 Regions Where EPT, EPT+, or EPT++ Is the Most Accurate
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percentiles. The ASE-minimizing discretizations are
given in Table 10. We refer to these as the standard-
percentile (SP) shortcut methods, plus identifiers for
the regions to which they correspond. Please see the
online supplement for the Type III and Type V SP
discretizations.

Table 10 Type-Specific P10–P50–P90 Discretization Shortcuts
(SP Methods)

Distribution type Points Respective probabilities

I-U Beta (SP1U) P10, P50, P90 0.228, 0.544, 0.228
I-J Beta (SP1J) P10, P50, P90 0.273, 0.454, 0.273
I-∩ Beta (SP1∩5 P10, P50, P90 0.296, 0.408, 0.296
VI Beta Prime (SP6) P10, P50, P90 0.308, 0.384, 0.308
IV (SP4) P10, P50, P90 0.322, 0.356, 0.322

The probabilities for SP1∩ and SP6 are similar to
those of ESM (0.300, 0.400, 0.300), lending previously
unknown support to the ESM shortcut; i.e., if one
wants to use the P10, P50, and P90 percentiles and is
dealing with a unimodal distribution bounded at one
or both ends, ESM is close to the discretization that
minimizes the error in the mean. However, GQ will
still outperform ESM (Bickel et al. 2011). The prob-
abilities for SP1J and SP1U are similar to those of
the MCS. The probabilities assigned to the P10 and
P90 points are largest for the Type IV distributions
because of their higher kurtosis, being unbounded in
both directions. The SP4 discretization is almost an
equal weighting of the P10, P50, and P90, which is
similar to ZDT.

Figure 7 shows which of SP, ESM, and MCS meth-
ods, all using the same percentiles, is most accurate
in estimating the mean or variance for a given dis-
tribution. Our new SP discretizations are the best of
the three over most of the region considered, and are
the most accurate for both the mean and the variance
over nearly the entire Type IV and VI regions. The SP
method is a distinct improvement over the ESM and
MCS. The MCS is only better than the other two for
parts of the Type I-U region. ESM is most accurate in
the mean only for small portions of the Type I-J and
I-∩ regions, but is most accurate in the variance over
most of these same regions.

We now compare the errors for the SP shortcuts
to the ESM and MCS. These results are summarized
in Table 11, with results for ESM and MCS repro-
duced from Table 6 and the best error measures high-
lighted. Errors for these shortcuts for Types III and
V are included in the online supplement. The SP
shortcuts outperform ESM and MCS, when averaged
over the region of interest, in terms of matching the
mean, because they use the same percentiles, but fit-
ted probabilities. Indeed, the three error measures



Hammond and Bickel: Reexamining Discrete Approximations to Continuous Distributions
22 Decision Analysis 10(1), pp. 6–25, © 2013 INFORMS

Figure 7 Regions Where ESM, MCS, or SP Is the Most Accurate
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for SPs in each region are equal to, or smaller than,
those for the ESM and MCS (except for the ME in
the Type I-U mean, which is higher than that for the
MCS). In terms of the variance, they are more accu-
rate than the MCS by each measure in each region,

and generally perform better than the ESM as well,
with Type I-∩ and I-J distributions as the only excep-
tions. SP1∩ is worse than ESM by each measure for
Types I-J and I-∩, but better by each measure than the
MCS. It is also interesting that SP1U is the best of all
shortcut methods considered in this paper at match-
ing the Type I-U variance, as seen by comparing these
results to Table 6.

6. Recommendations and Conclusion
In this paper, we have tested the accuracy of existing
discretization methods over a much wider set of dis-
tributions than has been done previously and devel-
oped several new discretization shortcuts, which are
more accurate in many cases than previously pro-
posed methods. We conclude with some observations
and recommendations for practice.

If the goal of a discretization is to match the
moments of the underlying pdf, GQ is ideal because it
perfectly matches the first several moments (depend-
ing on the number of points used) of any distribution
with finite moments. However, GQ can be difficult
to implement in practice. Unless one is discretizing
a common family (e.g., normal, uniform, triangular),
for which GQs have been tabulated (Bickel et al. 2011),
use of GQ requires software. In addition, GQ requires
that the moments of the underlying distribution be
known. BMn matches the mean and is relatively sim-
ple to use with a mathematical software package or
the graphical method described by McNamee and
Celona (1990, p. 30), the latter of which can generally
be effectively applied manually (Bickel et al. 2011).
However, BMn can significantly underestimate the
variance, and usually preserves it less accurately than
some shortcut methods (e.g., EPT). BMn’s accuracy
can be increased somewhat by using more points. One
drawback, however, of both the BMn and BMd meth-
ods is that the entire distribution is required, whereas
shortcut methods need only specific percentiles. That
aside, BMd performs quite poorly and should be
avoided if one’s goal is to closely approximate a dis-
tribution’s moments.

If the distribution is not known, and especially if
assessments are time consuming, we are left with
the shortcut methods. Of the preexisting shortcut
methods, EPT is a good general choice, but the
EPT+ and EPT++ shortcuts presented here generally
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Table 11 Errors for the SP Shortcut Methods Compared to ESM and MCS (Discretized Minus Actual Mean and
Variance)

Mean Variance

AE ASE ME AE ASE ME

I-U (Beta)
SP1U − 00009 9.65E−03 −00396 00080 3.70E−02 −00509
ESM 00153 3.64E−02 00449 00304 1.29E−01 00800
MCS 00040 1.11E−02 00302 00155 5.61E−02 00607

I-J (Beta)
SP1J − 00003 2.32E−04 00037 −00134 2.62E−02 −00276
ESM 00034 1.68E−03 00096 − 00067 1.39E−02 −00212
MCS −00035 1.36E−03 −00051 −00197 4.58E−02 −00330

I-∩ (Beta)
SP1∩ 00001 2.16E−05 00016 −00067 1.04E−02 −00213
ESM 00004 4.06E−05 00019 − 00053 8.73E−03 −00200
MCS −00030 1.05E−03 −00050 −00204 4.53E−02 −00321

VI (Beta Prime)
SP6 00000 9.79E−06 00007 −00145 2.29E−02 −00202
ESM −00006 4.46E−05 −00012 −00166 2.93E−02 −00221
MCS −00042 1.84E−03 −00051 −00298 9.01E−02 −00341

IV
SP4 00000 3.53E−06 00005 −00113 1.43E−02 −00167
ESM −00007 6.01E−05 00012 −00173 3.12E−02 −00224
MCS −00022 6.09E−04 00044 −00309 9.66E−02 −00353

Note. Shaded areas are most accurate shortcut for specific Pearson types.

improve this performance for their respective distri-
bution types. If one is dealing with a distribution that
is thought to have low skew, then EPT+ might be a
better choice than EPT++.

In practice, the analyst may not be dealing with a
distribution that belongs to the Pearson system. How-
ever, Pearson and Tukey (1965) showed that distribu-
tions that share the same skewness and kurtosis are
often very close in shape, even if they are not con-
tained within the Pearson system. With this knowl-
edge, the appropriate EPT+, EPT++, or SP shortcut
can be determined by considering the distribution’s
support (bounded at both ends, bounded at one end,
or unbounded). This basic characteristic is determined
by the nature of the uncertain quantity and should
be apparent. If the distribution is bounded on both
ends, then the analyst may be able to use knowledge
of its shape (e.g., is it ∩-shaped?) to further spec-
ify the appropriate Type I approximation. If there is
sufficient knowledge of the distribution to more nar-
rowly specify its location in Figure 1 (if it indeed falls
within this region), then Figure 6 or 7 can be used
to recommend a particular shortcut. As a practical
matter, the SP shortcuts use well-accepted percentiles,

whose assessment may be more reliable. For exam-
ple, Selvidge (1980) and Davidson and Cooper (1980)
reported that the P10 and P90 percentiles are assessed
more accurately than the P1 and P99 or the P5 and
P95. If so, then our new SP approximations will tend
to offer improved performance over the commonly
used ESM and MCS.

The Pearson system is composed of smooth distri-
butions, most of which are unimodal, with Type I-U
as the exception. This type, and perhaps other oddly
shaped or multimodal distributions, should be dis-
cretized with care. Neither the preexisting shortcut
methods we analyze nor the new shortcuts we present
perform well over even a quarter of the Type I-U
region, which is strong evidence that general shortcut
methods will not accurately represent them. A method
that takes the actual distribution into account, such as
BMn, is better for these kinds of distributions.

As a general approach, shortcut methods are use-
ful as a first approximation, which, when aided
by sensitivity analysis, will help identify important
uncertainties. These uncertainties can then be given
more attention when ascertaining the full distribution
and using discretization methods such as Gaussian
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quadrature or BMn. Decision analysis is an iterative
process, and, as the analysis evolves, the discretiza-
tions that are used can and should be adapted to the
importance of specific uncertainties. How a distribu-
tion is ultimately treated in a decision problem is a
function not only of the distribution itself, but also of
its relation to other aspects of the problem. It is often
the case that the analysis arbitrarily does not consider
refinement of uncertainty assessments or discretiza-
tions (Bickel et al. 2011), and although refinement is
not always necessary, its appropriateness should be
determined from characteristics of the decision.

Keefer and Bodily (1983) and Keefer (1994) con-
cluded that EPT is a good general discretization
method, and our results extended this conclusion to
a much wider range of distribution shapes and for
different support ranges. As we show, tailoring three-
point discretizations to specific distribution families
improves accuracy. Although these methods are the
result of minimizing average squared error, they also
perform well as judged by other measures of accuracy.

In sum, we hope this paper will provide researchers
and practitioners with a better understanding of dis-
cretization accuracy and that our newly developed
discretizations will enjoy widespread use.
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An electronic companion to this paper is available as
part of the online version at http://dx.doi.org/10.1287/
deca.1120.0260.
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