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xperiential learning is perhaps the most effective way to teach. One example is the scoring procedure used

for exams in some decision analysis programs. Under this grading scheme, students take a multiple-choice
exam, but rather than simply marking which answer they think is correct, they must assign a probability to
each possible answer. The exam is then scored with a special scoring rule, under which students’ best strategy
is to avoid guessing and instead assign their true beliefs. Such a scoring function is known as a strictly proper
scoring rule. In this paper, we discuss several different scoring rules and demonstrate how their use in testing
situations provides insights for both students and instructors.
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1. Background

In several decision analysis programs (e.g., those
at Stanford University, the Darden School of Busi-
ness, the University of Illinois at Urbana-Champaign,
and the University of Texas at Austin), a portion
of students’ grades are based on their ability to
provide high-quality probability assessments. Specifi-
cally, at each university, except Darden, students take
multiple-choice exams or quizzes, but rather than
simply marking the answer that they think is cor-
rect (or most likely to be correct), they must assign
a probability to each possible answer.! Such an exam
should better reveal the students” mastery of the sub-
ject, but how should the instructor assign scores in
this situation??

Formally, consider the assessment of a probability
distribution by a student over n mutually exclusive
and collectively exhaustive answers, where n > 1. Let
p = (p,...,p,) be an n-vector of probabilities rep-
resenting the student’s private beliefs, where p; is
the probability the student assigns to answer i being
correct, and the sum of these probabilities is equal
to one. These beliefs represent the student’s “true”
state of knowledge, but are not directly observable by

L At Darden, students either forecast whether or not an event will
occur or provide quantiles for a continuous quantity.

2 A summary version of this work appeared in Bickel (2009).
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the instructor. Let the student’s public assessment or
response be given by r=(ry,...,r,), where 7, is the
stated probability (the student’s answer) that answer i
is correct, and the sum of these responses is equal to
one.

Students are likely to have many objectives in such
a situation, ranging from learning the material to
obtaining a good grade. We assume that students seek
to maximize their total course points. This simplifica-
tion seems reasonable, particularly in programs that
subdivide letter grades (e.g., B+, A—, A).

If the student is scored according to some func-
tion R, then her expected score when she assigns r
and believes p is

R(r|p) =E,[R(N)]=3_p:Ri(x), )

where R; is the score received for assigning r when
statement i is correct. If the student seeks to maximize
her expected score, then the optimal response is
r* =argmaxR(r | p). 2)
r
1.1. The Problem with Standard Multiple-Choice
Exams

If the scoring rule is linear, then the optimal response
is to assign 1.0 to the answer that student believes
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is most likely, which is the best strategy in tradi-
tional multiple-choice exams. Thus, students A and
B believing p, = (0.85,0.15) and p; = (0.51, 0.49),
respectively, would both assign r, = r; = (1,0) and
receive the same score. Likewise, students believing
pa = (0.51,0.49) and pz = (0.49,0.51) would assign
r, = (1,0) and rz = (0, 1), respectively, and receive
very different scores even though their knowledge is
almost identical.

This insensitivity of a student’s score to her knowl-
edge is a major limitation of standard multiple-choice
exams. These exams are not incentive compatible in
that they do not encourage the students’ responses
to reflect their beliefs. A set of incentive-compatible
scoring rules does exist and is discussed next.

2. Strictly Proper Scoring Rules

A strictly proper scoring rule T is a scoring function
such that the student strictly maximizes her expected
score by setting r* = p; that is, T(r|p) < T(p|p) for
all r#p and T(r* | p) = T(p | p) when r* = p (Toda
1963, Roby 1965, Shuford et al. 1966, Winkler 1968).
Many strictly proper scoring rules have been devel-
oped. Three of the most popular are given below:

Quadratic (Q): Q;(r)=2r,—r-re[-1,1]; (3)
Spherical (S5): S;(r)=r;/(r-1)*€[0,1];  (4)

Logarithmic (L): L;(r) =In(r;) € (—o0,0].  (5)

The range of possible scores differs considerably. For
example, logarithmic scoring holds the possibility of
an infinitely negative score. Although this may seem
like a defect, we will argue that this feature is a benefit
of log scoring.

Any linear transformation of a strictly proper scor-
ing rule is also strictly proper (Toda 1963).°> Thus,
the rules given in Equations (3)—(5) can be scaled to
provide the maximum number of points desired on
the exam. They can also be scaled such that a par-
ticular type of assessment, such as uniform, receives
a particular score. Please see Bickel (2007) for a full
discussion.

% The Brier score, which is heavily used in meteorology to measure
forecast accuracy, is simply one minus the quadratic score. Under
Brier scoring, one seeks to minimize, rather than maximize, their
score.

2.1. Deciding Among Scoring Rules

Given the rich choice of scoring rules, which one
should be used? Scoring rules have ex ante and
ex post properties (Winkler 1996). Ex ante they
encourage the assessor to set their response equal
to their belief. Ex post they can be used to evalu-
ate assessment performance. In a classroom setting,
instructors are likely to be interested in both uses.
For example, the instructor wants to encourage truth-
ful response, but also wants to evaluate the students
based on their assessment.

Any strictly proper scoring rule provides the proper
ex ante incentive—namely, to set r equal to p. How-
ever, the rules differ in their ex post properties. The
primary distinction between the rules comes down to
whether or not one believes the score should depend
only upon the probability assigned to the correct
answer or if it should also depend upon probabili-
ties assigned to answers that were incorrect, or events
that failed to take place. In what follows, we pro-
vide a brief summary of three important properties:
locality, sensitivity to distance, and sensitivity to non-
linear objectives. For a more detailed discussion, the
interested reader should see Winkler (1996) and Bickel
(2007). As the reader will see, we have a strong,
and we believe reasonable, preference for logarithmic
scoring.

2.1.1. Locality. Shuford et al. (1966) proved that
when there are more than two possible answers, the
logarithmic rule is the only proper scoring rule whose
value depends only upon the probability assigned to
the correct answer. This is referred to as the local prop-
erty. From an ex post perspective, the local property is
reminiscent of the likelihood principle (Winkler 1969,
1996). The likelihood principle states that when draw-
ing a statistical inference (e.g., the instructor infer-
ring the student’s degree of mastery), all that should
matter (normatively) is the likelihood of the observa-
tion, not the likelihood assigned to events that failed
to occur. Of course, the likelihood principle follows
automatically in a Bayesian setting. Because Bayesian
thinking is fundamental to decision analysis, the use
of a scoring rule that satisfies this property is ped-
agogically consistent. As Bernardo and Smith (2000,
p- 72) wrote:

It is intuitively clear that the preferences of an indi-
vidual scientist faced with a pure inference problem
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should correspond to the ordering induced by a local
score function....The individual scientist should be
assessed (i.e., scored) only on the basis of his or her
reported judgment about the plausibility of [the correct
answer or the event that occurred].

From a practical perspective, locality or the lack
thereof has three important implications:

1. Local rules should be easier for students to
understand. For example, a two-dimensional chart
can be provided that details their score for any set of
assignments, which is only possible for other rules in
special circumstances (e.g., the student assigns #; to
the correct answer and equally distributes the remain-
ing probability among the n — 1 answers).

2. A local rule will always assign higher scores to
higher probability assignments to the correct answer.
Q and S do not share this property when there are
more than two answers. One implication of this fea-
ture is that one student may assign a higher (lower)
probability than another student to the correct answer,
but receive a lower (higher) score. For example, under
Q scoring, with n =4, it is possible for an assignment
on the correct answer of anywhere between 0.27 and
0.40 to earn the same score.

Bickel (2007) studied this problem in detail based
on five years of Stanford midterm test data. The stu-
dents in this sample were scored using the logarith-
mic scoring rule. However, if they had been scored
under Q about 6% of the students on any given ques-
tion would have received a lower score than another
student even though they assigned a higher probabil-
ity to the correct answer. In the case of S scoring, this
percentage would have been about 8%. On one par-
ticular question, over 28% of the class would have
been involved in such an incident under Q scoring
and over 30% under S scoring. Instructors might find
these situations difficult to manage, with almost one-
third of the class pointing out that they received a
lower score than other students on a particular ques-
tion even though they assigned a higher probability
to the correct answer.

3. Different nonlocal rules may generate different
rank orderings among students for the same set of
assessments. Bickel (2007) closely examined the rank
order properties of Q, S, and L in actual testing sit-
uations and found that Q and S performed poorly
in this regard. For example, about 10% of students

would have fallen in rank about 7.5% if they had been
scored with either Q or S instead of L. In other words,
the choice of the scoring rule could lower students’
scores almost a full letter grade (about 10%). Loga-
rithmic scoring will always rank students based on
the probability they assigned to the correct answer.

2.1.2. Sensitivity to Distance. Suppose the in-
structor believes that among the incorrect answers
some are “more” incorrect than others. For example,
one of the incorrect answers might stem from a com-
mon calculation error, whereas another may represent
a fundamental misunderstanding of course material.
In other words, there is an ordering among the pos-
sible answers. Scoring rules that can account for this
are sensitive to distance. By their very nature, rules that
are sensitive to distance are not local. Several authors
have explored scoring rules that are sensitive to dis-
tance (Epstein 1969, Staél von Holstein 1970, Jose et al.
2009). The ordering of events is straightforward in sit-
uations where there is a natural ordering (e.g., the
score in a sporting event or the closing price of a stock
market index), but seems to be more difficult in a
classroom setting. For example, the instructor would
be required to construct an ordering of the answers
in terms of their degree of “correctness.” This task
strikes us as difficult and, to our knowledge, rules
that are sensitive to distance have never been used as
part of the grading process in an educational setting.
This may be a fruitful area of research.

2.1.3. Sensitivity to Nonlinear Objectives. The
proof that students should respond truthfully is based
on an assumption that they seek to maximize their
expected score. If instead students are risk averse
over the total number of points they earn in the
course, then Q, S, and L are no longer strictly proper.
However, Bickel (2007) demonstrated that logarith-
mic scoring is the least affected by this, which is sur-
prising given that it introduces the possibility of an
infinitely negative score. We will more fully discuss
the issue of risk aversion and the negative infinity
“problem” later in the paper.

In addition to risk aversion, competition among
students also induces a nonlinear preference over
course points. For example, if the students view them-
selves as competing for a limited number of A’s, then
they care about their rank relative to other students.
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Unfortunately, under this objective the scoring rules
are not strictly proper. Lichtendahl and Winkler (2007)
investigated this problem in the case of two assessors
under quadratic scoring. They showed that competi-
tion between assessors should lead assessors to pro-
vide more extreme (closer to categorical—i.e., 0 or 1)
forecasts. Lichtendahl and Winkler (2007) did not ana-
lyze the relative sensitivity of each scoring rule to this
effect, and this appears to be an open research ques-
tion. However, as we show in §4, our data do not sug-
gest that competition among students is a significant
issue.

2.2. Scoring Rule Decomposition

Any strictly proper scoring rule can be decom-
posed into the sum of two components: one mea-
suring “care” or sharpness and the other “honesty”
or calibration (DeGroot and Fienberg 1982, Winkler
1996). In general, Equation (1) can be decomposed as
(Winkler 1996)

R(x|p)=R(p|p)+C(R, 1, p); (6)
— ——
Care Honesty

C is a penalty function, which is maximized at zero
when r equals p. Under L scoring, this decomposition
yields

Lir|p) = Lplnp, - Ypin
= —H(p) - KL(p| 1), )

where H(p) is the entropy of p (Shannon 1948, Cover
and Thomas 1991) and KL(p|/r) is the Kullback-
Leibler (KL) divergence between p and r (Kullback
and Leibler 1951, Cover and Thomas 1991).* The KL
divergence is minimized at zero when r = p. If the
student assigns her true beliefs, then her expected
score is simply the negentropy of p (i.e., the negative
of the entropy of p), which measures the sharpness of
the student’s assignment. A categorical assignment of
zero or one has zero entropy, and uniform assignment
has maximum entropy (equal to Inn). Thus, the cal-
ibrated student can maximize her score by reducing
the entropy of p, which implies that she must have

*Kerridge (1961) has referred to Equation (7) as a measure of
“inaccuracy.”

greater knowledge. Thus, the use of L scoring has the
property that calibrated students can only increase
their score by improving their knowledge of the test
material.

3. Classroom Implementation

Based on the properties discussed above, we decided
to use logarithmic scoring for the exams discussed in
this paper. Specifically, students were scored based on
the following rule:

L(t)=a+bln(r),
a=100/N )
b=a/In(n),

where N is the total number of questions on the
exam, and 7 is the number of possible answers for
each question. For the exams discussed in this paper,
N =15 and n = 4. As discussed above, this rule is
strictly proper. The constants a and b, although arbi-
trary, have been selected such that the maximum
score on a 15-question exam is 100, and a uniform
assignment of (1/n,1/n,1/n,1/n) will earn a score
of zero. Under this normalization, a negative score
implies that the student did worse than if she had no
basis for favoring one answer over another.

On the first day of class we explain that the
midterm and weekly take-home quizzes will be
graded using the probabilistic scoring method. Stu-
dents are told that a negative infinity on the midterm
or any quiz will be treated as such; these students
will either need to drop the class or will earn an F.
The midterm is generally worth 20% of the final grade
and the quizzes are worth 10%. We explain the grad-
ing system in detail during the first lecture so that a
decision to take the class implies acceptance of this
grading scheme. We have observed that some stu-
dents choose to drop the class at this point, but do
not know their underlying reasons for doing so.

All probability assignments are normalized to 1.0,
in the event that the student’s assessments vio-
late this constraint. For example, an assignment of
(0.8,0.1,0.1, 0.1) would be normalized to (8/11,1/11,
1/11,1/11), whereas an assignment of (0.2,0.1,
0.5,0.1) would become (2/9,1/9,5/9,1/9). If a stu-
dent leaves an answer blank, then any remain-
ing probability is equally distributed among the
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blank answers. For example, an assignment of
(=, —,—,—) would become (0.25,0.25,0.25, 0.25).
However, an assignment of (—,0.1,0.1,0.9) would
become (0,1/11,1/11,9/11) because the student did
not have any additional probability to distribute to
the blank answer.

We do not formally prove that logarithmic is strictly
proper, but instead assign a homework problem
where students determine their optimal response for
a binary question (1 = 2). Specifically, we ask them to
plot (in Excel®) their expected score as a function of
their response on the answer they think is most likely
to be correct. This reveals that their expected score is
maximized when they set their response equal to their
beliefs. We then note that questions with more than
two possible answers can be thought of as a series of
binary questions. For example, in the case of n =3,
we first assign probabilities to (a) and the union of
(b) and (c). We know the best strategy in this binary
setting. We then consider (b) and (c) and divide our
remaining certainty among these two answers, which
is again binary. For those students that want a proof,
we refer them to Bickel (2007), which contains the
proofs for all three rules.

The scoring system discussed here is wholly con-
sistent with a course in decision making under uncer-
tainty. The students’ assignment r is a decision that
requires careful consideration. Once they understand
the scoring system and that their response should
equal their beliefs (i.e., r = p), the exam becomes an
exercise in probability assessment with students need-
ing to assess p. Because there is no notion of long-run
frequencies, this assessment highlights the view taken
in the course that probability is a statement of belief.

3.1. The Negative Infinity “Problem”

Some students worry about the possibility of earn-
ing a negative infinity—as if this is a random event
that is not under their control. We ask the stu-
dents, “Who decides what probably you assign to
each answer?...You do! So, if you are afraid of earn-
ing a negative infinity you can simply decide not to
assign a zero.” This being said, we have found it
helpful to minimize the chance that students “acci-
dently” assign a zero probability. The quizzes and
midterm have a safety mechanism that the students
may choose to employ. This is called the “safe harbor

statement.” This statement allows students to spec-
ify that any probability assignment of zero should
be replaced by g, where g is set by the student.
For example, a student may elect to set g equal
to 0.001. In this case the assignment (0.3, 0.3, 0.4, 0)
would become (0.3/1.001, 0.3/1.001, 0.4/1.001, 0.001).
The student may alternatively have her probability
assignments taken at face value. An analogy to rock
climbing seems fitting; the student may choose to
climb with or without a rope. Because the safe harbor
statement only applies to probability assignments of
zero, nonzero probability assignments of less than g
are not replaced by g (i.e., students are not specifying
a minimum probability assignment). This is again in
the spirit of decision making. The student must still
think carefully about her assignments. Continuing our
climbing analogy, the safety keeps them only from
killing themselves, not from getting severely injured.
We believe the realization that decisions can have neg-
ative consequences should be a part of the class—
before students are released into the real world. If a
civil engineer designs a walkway (a series of deci-
sions) that later collapses and kills over 100 people,
she will face consequences significantly more painful
than the prospect of failing a graduate course. Deci-
sions have consequences, sometimes tragic ones.
Sometimes students will counter that if they “truly”
believe a particular answer is impossible, they should
assign zero because the optimal policy is to set r=p.
To this challenge, we simply ask a series of questions
that encourage self-reflection. Have they have ever
been sure of something and then later proven wrong?
Have they ever thought they “aced” an exam, but
were later disappointed with the result? Have they
ever transposed answers on a multiple-choice exam?
Do they think that the wrong answers on the exam are
generated by the instructor at random or are drawn
from common and seductive mistakes? Perhaps more
important for Bayesians is the concept of strict coher-
ence, or Cromwell’s rule (Dawid 1982, Lindley 1982),
which states that a probability of zero should not be
assigned to any possibility. This is important because
in Bayesian analysis, the posterior distribution is pro-
portional to the product of the prior and likelihood.
If one assigns a categorical prior (a probability of 1 to
one of the possibilities and 0 to the others), then no
amount of evidence could ever change one’s mind.
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We suggest a degree of humility and encourage stu-
dents to allow for the possibility that within the con-
text of a timed exam, they could be making a mistake.
We further suggest that they carry this perspective
into their personal and professional lives.

3.2. The Issue of Risk Aversion

As discussed in §2, Q, S, and L are only strictly
proper if students seek to maximize their expected
score (i.e., they are risk neutral over course points). If
students are instead risk sensitive, then they should
seek to maximize some utility function over total
course points. Bickel (2007) demonstrated that even
in this case, students’ assignments should be nearly
proper as long as too much weight is not placed
on any one question. Specifically, assume a particu-
lar student’s utility function can be modeled as being
exponential such that u(P) = —Exp[—P/R], where R
is the student’s risk tolerance (measured in course
points), and P is the total points he or she earns
in the class. A positive risk tolerance implies that
the student is risk averse. Recall from Equation (8)
that b = (100/15)/In(4) ~ 4.81. As long as b/R is less
than 7.5%, the student should not reduce her assess-
ment more than 0.03 in an effort to hedge (Bickel
2007). We believe that 0.03 is a reasonable threshold,
because students probably cannot assess their beliefs
any closer than this.

The parameter b is under the instructor’s control,
whereas R is a characteristic of the student. Assess-
ing R is difficult, but consider the following: Suppose
at the end of class, a student has earned a total of
70 points out of a possible 100. We now offer this
student a gamble where with probability p we will
change their score to 100 and with probability 1 —p
we will reduce their score to 0. What probability p
would make the student indifferent to accepting the
gamble compared to his or her current score of 70?
If the student, who we assume has an exponential
utility function, replies 0.8, then his or her risk toler-
ance is about 100 points. If the student replies 0.99,
then his or her risk tolerance is 15.75 points. To be
conservative, assume that students’ risk tolerances are
15.75, and therefore b must be less than 1.18 (0.075 x
15.75). For the 15-question, four-answer midterm, we
use b~ 4.81. However, this assumes that the midterm
is worth 100% of the final grade. To hold b below 1.18

(in terms of total course points), we should not place
more than about 25% (1.18/4.81) of the student’s total
score on the midterm, or no more than about 1.5%
of his or her total points on any one question. As we
discuss in §4, our results do not suggest that risk aver-
sion is a significant issue.

4. Insights for Instructors

The issues discussed thus far turn a simple exam
into an opportunity to teach fundamental concepts
about decision making. In addition to this benefit for
students, the grading scheme provides the instructor
with a richer understanding of the students” mastery
of course material. We will illustrate this by dis-
cussing the results for a single midterm exam involv-
ing 166 Stanford University graduate students.

The exam consisted of 15 questions with four possi-
ble answers each. The average probability assignment
on the correct answer for each question is displayed
in Figure 1.

Figure 1 shows that students had trouble with Prob-
lems 3, 5, 9, 10, 12, 14, and 15. In fact, the average
assignment to the correct answer on Problem 3 was
below 0.25, which would have earned a zero; the
class” performance on this problem was worse than
someone with no knowledge. The students would
have been better off skipping this problem, which is
what they might have done if they faced it the first
day of class. Their learning (or their instruction) was
negative!

Under an assumption that students are respond-
ing honestly, their response is equal to their belief,
and their expected score is their negentropy (see §2.2).

Figure 1 Average Probability Assignment to the Correct Answer
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Therefore, we can calculate the entropy of each
student’s probability assignment on each question.
Figure 2 plots the average entropy of each problem
(averaged over all students). This provides insight
into how certain or uncertain the class was about a
particular problem. Lower entropies imply that the
class was more certain of a particular answer, but not
necessarily the correct answer. The maximum possible
entropy is In4 ~1.38.

Figure 2 indicates that students were the most
uncertain of the concepts covered in Problems 10
and 14. Although Problem 3 created uncertainty, it
was not as high as one might expect based on the
students” low assignment to the correct answer. This
implies that students were more certain of a wrong
answer, which can be seen in Figure 3. The dark-
est bar, d, was the correct answer, yet the class as
a whole thought ¢ was over twice as likely to be
correct. At this point in our review of test results,
we would discuss the specific concepts involved in
Problem 3 and surface what students found attractive
about c.

Figure 3 Probability Assignment to Each Answer for Problem 3

Average probability
assignment
o
[9)]

Answer

4.1. Comparison to Standard Multiple
Choice Exams

Problem 10 had the second highest entropy, and its
average probability assignment is shown in Figure 4.
For this problem, whose answer was b, the class” aver-
age assignment was quite dispersed, with answers a
and c attracting some attention. This insight may not
surface with a traditional multiple-choice exam. For
example, suppose all students held the beliefs shown
in Figure 4. In this case, they would have all marked
b, and the instructor would have no idea how poor
their understanding really was.

To investigate this phenomenon more fully, we
compared the fraction of students that would have
marked the correct answer in a standard multiple-
choice exam, assuming each marks the answer that
he or she thinks is the most likely, to the average
probability assignment on that answer. This is plot-
ted in Figure 5. Although there is a correlation of
0.76, the discrepancy is instructive. For example, con-
sider Question 11 (Q11), identified with the triangle

Figure 5 Comparison of Standard Multiple-Choice Results to

Probabilistic Scoring Results
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in Figure 5, in which answer b was correct. If stu-
dents were simply asked to mark which answer they
thought was the most likely, then 81% would have
selected this answer, and the instructor might have
believed that the class had mastered the underly-
ing concept. However, the average probability assign-
ment on this answer was only 69%, which implies a
lesser degree of understanding. We see this behav-
ior in the other questions as well. In fact, a standard
multiple-choice exam would have overestimated stu-
dent understanding over a wide range of beliefs.

4.2. Additional Insights for Students and
Instructors

A more complete understanding of student test

results is aided by two other decision analysis topics:

probability assessment and the combination of expert

forecasts.

4.2.1. Probability Assessment. Figure 6 compares
five semesters of students” midterm scores (1,030
students) to the average entropy of their responses
(averaged over 15 questions). Based on Equation (7),
students that knew the material and assessed their
state of knowledge well should have low entropy
and receive a high score. The solid line is the max-
imum achievable midterm score given a particular
entropy. This will obtain when a student believes one
answer to be the most likely and the other answers
to be equally unlikely. For example, a student that
assigned 0.7 to one answer and 0.1 to the other
three answers would have an entropy of 0.7In0.7 +
0.3In0.1 = 0.94 and a maximum possible score of

Figure 6

Midterm Score vs. Average Entropy for 1,030 Students Over
Five Semesters
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100/15+ (100/15/1n4)In 0.7 = 4.95. If they did this on
each of the 15 problems, their average entropy would
be 0.94, and their maximum possible score would
be 74.

Some students had very low entropies and assessed
their state of knowledge well. Even students with
entropies around 0.9 (equivalent to a maximum
assignment of about 0.72) still earned some of the
highest marks because they assessed their more lim-
ited state of knowledge well. On the other hand, the
student with the lowest average entropy scored only
a 60 on the exam because he overestimated his knowl-
edge on one or more problems. The lowest score
(—50) was by a student who was very confident of
his knowledge. As Mark Twain wrote, “What gets us
into trouble is not what we don’t know. It's what we
know for sure that just ain’t so.”

Given the subjective view of probability taken in
the class, how can we say someone is good at assess-
ing probability? Although this is difficult to address
for a single assessment, it can be partially addressed
if one has access to many probability assessments, as
we do in this case. The concept we use is referred
to as calibration. If a probability assessor is well-
calibrated, then a probability assignment of p should
occur p x 100% of the time. In the case of the midterm,
we have analyzed the calibration and the students’
probability assessments over five semesters, which
includes 1,030 students and 61,800 probability assign-
ments (1,030 students x 15 questions x 4 possible
answers). The results are presented in Figure 7. We
used a bin size of 0.05 to group probability assign-
ments and treated all assignments between p — 0.05

Figure 7 Calibration of Student Probability Assignments
(61,800 Assessments)
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and p (0.05 <p <1) as an assignment of p —0.025. For
example, we treat all assignments between 0 and 0.05
as an assignment of 0.025. The results are presented in
Figure 7. We added to this figure the frequency with
which different assessments were given. For exam-
ple, assessments between 0 and 0.05, represented as
0.025, were given almost 40% of the time. We notice
local peaks at 0.675 and 0.825. Thus, students’ tended
to give assessments between 0.65-0.70 and 0.80-0.85
more frequently than other nearby probabilities.

Based on the normal approximation to the binomial
distribution, we establish a 99% probability interval
around the line of perfect calibration. There is a 1%
chance the observed relative frequency will lie outside
this interval (0.5% chance of being above and 0.5%
chance of being below). For example, if the proba-
bility an answer is correct is truly f, then there is a
99% chance that the actual relative frequency of cor-
rect answers will be within

f+®71(0.995),/ f(1— f)B1, 9)

where @' is the inverse of the standard normal
cumulative (®71(0.995) = 2.576) and B is the number
of probability assessments. The interval is not smooth
because the number of assessments, B, at any par-
ticular probability is not constant. We see that the
majority of the results are within this interval, with
only assessments of 0.025, 0.675, 0.925, and 0.975 lying
clearly outside. This performance is encouraging and
demonstrates that students can reliably provide cali-
brated probability assessments.

The fact that the students’ probability assessments
are well calibrated serves to allay concerns regard-
ing the affect of risk aversion and competition among
students. However, we cannot completely rule out
these concerns. Risk aversion would serve to move
students” assessments closer to uniform, as they try to
hedge (Bickel 2007). On the other hand, competition
would serve to push the students towards categor-
ical forecasts (Lichtendahl and Winkler 2007). Thus,
these effects could be somewhat offsetting. How-
ever, as discussed in §3.2, we design the exam such
that risk aversion should not (in a normative sense),
be a significant factor. Whether or not Lichtendahl
and Winkler’s (2007) normative model of assessment
competition is a good descriptive model is an open
question.

Figure 8 Student Likelihood Functions (61,800 Assessments)
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It is also interesting to investigate the students’ like-
lihood function. In Figure 8 we present the assign-
ment students made to the correct and incorrect
answers. We see that students are very good at identi-
tying wrong answers (they assign a low probability to
them). Their ability to identify correct answers is not
as strong, but still impressive. We again notice their
predilection for assigning probabilities in particular
ranges.

4.2.2. Combination of Expert Assessments.
Another important topic in decision analysis is how
to combine probabilistic assessments from multiple
experts. We use the probabilistic scoring exercise to
demonstrate this concept as well.

As mentioned in §3, we give students a weekly
quiz containing a single problem that is graded in the
manner discussed here. We begin by assigning stu-
dent i a weight w; that represents his or her degree of
prior expertise. At the start of the semester, w; =1/M,
where M is the number of students. If we interpret w;
as the probability that student i’s probability assign-
ment is the “truth,” then we can use Bayes’ rule to
update the weights after each quiz (Roberts 1965).

Formally, let p; be the probability that student i
assigned to the correct answer. The posterior weight
for student i is then

(w; | p;) = .
: 2 W;-p;

The denominator is the probability the instructor
would assign to the correct answer based upon the
prior weights. As is true of Bayesian analysis, the pos-
terior depends only upon the probability assigned to
the event that actually occurred (the likelihood) and
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Figure 9
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not events (or data) that might have been observed
but were not (the likelihood principle). Thus, students
seeking a good rating should seek to maximize their
likelihood or the probability they assign to the correct
answer. Because logarithmic scoring depends only
upon the probability assigned to the correct answer,
it is consistent with this strategy and may be used
both to incentivize students to respond truthfully and
to evaluate their performance though the use of like-
lihoods. As discussed in §2.1, the logarithmic scor-
ing rule, being the only local scoring rule, is the only
strictly proper scoring rule that satisfies these criteria
(Winkler 1969).

After each week’s quiz, we update the expertise rat-
ing for all students. The results of the first six quizzes,
for a smaller class (recently taught at Texas A&M Uni-
versity), are shown in Figure 9.

The range of expertise is quite broad, with one stu-
dent’s expertise weight increasing from 2.5% (1/40)
to slightly above 8%. The worst-performing student’s
expertise weight dropped to 0.013%.

The intent of combining expert assessments is to
arrive at a better forecast. The midterm takes place

Dynamics of Student Expertise Ratings (40 Students Shown in Quartiles)
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after the sixth quiz, at which point we discuss apply-
ing their expert weighting to develop an assignment
on each of the midterm questions; that is, we use
the Roberts model (Equation (10)) and multiply each
student’s expertise weighting going into the midterm
by their probability assessment and sum over all stu-
dents. The Roberts method is a linear opinion pool.
Although we do not discuss linear opinion pools and
other methods to combine expert judgments, other
instructors could use this analysis as a jumping off
point for these concepts.

We compare the Roberts weighting to a simple
average of their assignments, referred to as the consen-
sus assessment. The combined probabilities assigned
to the correct answer for each midterm question are
shown in Figure 10.

Figure 10 indicates that the Roberts forecast beat
the simple consensus forecast in all but one question
(Question 15) and tied in one case (Question 9). The
average score on this midterm was 35. The consensus
forecast would have earned 61, whereas the Roberts
weighting would have earned a 68. A strategy of



Bickel: Scoring Rules and Decision Analysis Education
Decision Analysis 7(4), pp. 346-357, ©2010 INFORMS

356
Figure 10 Comparison of Consensus and Roberts Assessments
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updating the weights after each midterm question
would have earned a 74.

5. Conclusion and Suggestions for
Future Research

Strictly proper scoring rules offer the opportunity to
turn testing situations into rich learning opportuni-
ties. In this paper, we described the insights that
can be obtained by students and instructors. These
learnings reinforce essential decision analysis topics
such as decision making, the meaning of probability,
probability assessment, risk aversion, entropy, calibra-
tion, and combination of expert forecasts. In addition,
probabilistic assessments provide instructors with a
much richer understanding of class needs. Our work
has also surfaced the following research needs:

¢ Performance under different scoring rules.
Despite over 40 years of scoring rule use, we still lack
a descriptive study that carefully explores how asses-
sors respond to different scoring rules. For example,
how are calibration results affected by the use of Q,
S, or L scoring? We have assumed that because each
of these rules is strictly proper, they all provide the
same incentive to respond truthfully. This normative
conclusion should be compared to descriptive reality.

¢ Sensitivity to distance in practice. As discussed
in §2.1, there has been a resurgence of interest in
designing scoring rules that are sensitive to distance

or that can measure performance relative to a baseline
distribution (e.g., see Jose et al. 2009). To our knowl-
edge, research regarding how individuals respond to
these rules in practice has not been published. For
example, a paper that detailed the use of a distance-
sensitive rule in an educational setting, where the
instructor specifies the degree of correctness, would
be most interesting. How do these results affect the
quality of the assessments? Are the calibration results
better than what is achieved under nonlocal rules?

* Descriptive importance of competition among
forecasters. Competition among forecasters holds the
potential of undermining the use of scoring rules,
because in this case they are no longer strictly proper
(Lichtendahl and Winkler 2007). Yet, our results sug-
gest that competition is not a significant issue, even
though students realize that they are in a competitive
environment. How general is this conclusion? Have
we just managed to avoid this concern because we
stress the properness of logarithmic scoring and do
not mention competition? Would our results be dif-
ferent if we made it clear to students that they are
competing? To what degree does risk aversion offset
the effects of competition?

¢ Normative implications of competition under
different scoring rules. The research discussed above
is focused on the descriptive implications of com-
petition (i.e., does it impact the quality of the
assessments). There is also additional normative
work to be done regarding competition. For exam-
ple, Lichtendahl and Winkler (2007) examined the
normative implications of competition between two
assessors under quadratic scoring. What are the impli-
cations of other rules? Are certain rules less sensitive
to competition? For example, Bickel (2007) found that
log scoring is the least sensitive to issues of risk aver-
sion. Likewise, how does the inclusion of risk aver-
sion alter the normative implications of competition?
It should ameliorate the incentive to provide extreme
forecasts, but to what degree?

¢ Educational use of other scoring rules. As men-
tioned at the outset, scoring rules are being used
in several decision analysis educational programs. In
some cases, the selected scoring rule is nonlogarith-
mic. Publishing the experience with these rules would
deepen our understanding of the implications of dif-
ferent rules and serve as a useful balance to this paper,
which is heavily focused on the use of log scoring.
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In closing, our experience with the use of scoring
rules over the last 15 years has been quite positive.
Although students are initially worried about the new
grading scheme, we find that with practice they over-
come their fear and some even enjoy it. We hope that
other instructors will adopt this scoring system and
publish their results regarding its use.
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