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The construction of a probabilistic model is a key step in most decision and risk analyses. Typically this is
done by defining a single joint distribution in terms of marginal and conditional distributions. The difficulty

of this approach is that often the joint distribution is underspecified. For example, we may lack knowledge
of the marginal distributions or the underlying dependence structure. In this paper, we suggest an approach
to analyzing decisions with partial information. Specifically, we propose a simulation procedure to create a
collection of joint distributions that match the known information. This collection of distributions can then be
used to analyze the decision problem. We demonstrate our method by applying it to the Eagle Airlines case
study used in previous studies.
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1. Introduction
In many decision problems, we lack complete infor-
mation regarding the underlying joint probability dis-
tribution. For example, marginal distributions and/or
probabilistic dependencies may not be completely
specified. Differing methodological areas within the
management sciences view this lack of specificity
in differing ways. To some, the lack of information
stems from a belief that the underlying probability
distribution is “unknown.” Others regard the incom-
plete information as simply an acknowledgment that
it has yet to be assessed. We do not distinguish
between these perspectives in this paper. Instead, we
present a methodology that is useful in either case.
For those that believe the underlying distributions are
unknown, our procedure will allow them to model
this uncertainty explicitly. For those that see this as
an issue of assessment, the methods discussed herein
will help to ensure that the assessed distributions are
consistent with the available information and quan-
tify the benefit of further elicitations.

Although the lack of information could stem from
an under specification of marginal distributions, we
are primarily motivated by underspecification of
the probabilistic dependence structure. Probabilistic

dependencies are inherent to many decision envi-
ronments, including medicine (Chessa et al. 1999),
nuclear power (Cooke and Waij 1986), and oil
exploration (Bickel and Smith 2006, Bickel et al. 2008).
Failure to capture these relationships can have impor-
tant and sometimes tragic consequences (Apostolakis
and Kaplan 1981, Smith et al. 1992). For example,
the Space Shuttle Challenger accident was appar-
ently caused, in part, by engineers’ failure to under-
stand the dependency between ambient temperature
and o-ring resiliency (Presidential Commission on the
Space Shuttle Challenger Accident 1986).

Probabilistic dependence is often ignored because
it complicates probability assessments (Lowell 1994,
Korsan 1990). Winkler (1982) identified the assess-
ment and modeling of probabilistic dependence as
one of the most important research topics facing deci-
sion analysts. He suggested the development of sensi-
tivity analyses that would identify key dependencies
and decision-making methods that use less than
full probabilistic information. Miller (1990, p. 443)
argued, “We need a way to assess and process depen-
dent probabilities efficiently. If we can find generally
applicable methods for doing so, we could make sig-
nificant advances in our ability to analyze and model

329



Montiel and Bickel: Decision Making with Partial Information
330 Decision Analysis 9(4), pp. 329–347, © 2012 INFORMS

complex decision problems.” These critical challenges
have gone largely unanswered.

In this paper, we present a new methodology for
modeling decisions given partial probabilistic infor-
mation. In particular, we create the set of all possi-
ble discrete distributions that are consistent with the
information that we do have. We then (uniformly)
sample from this set using the joint distribution simu-
lation (JDSIM) procedure (Montiel 2012, Montiel and
Bickel 2012), which is based on the hit-and-run sam-
pler (Smith 1984). Our procedure is perhaps best
thought of as a sensitivity analysis, because we do
not claim that all distributions in our set are equally
likely. Indeed, specifying the probability distribution
over the set of all probability distributions presents its
own difficulties.

Other approaches to the problem discussed here fall
into three primary categories: (i) approximation meth-
ods that specify a single joint probability distribution
given partial information, (ii) sensitivity analysis pro-
cedures that partially explore the space of feasible
joint distributions, and (iii) “robust” decision-making
methods that attempt to ensure some minimum level
of performance.

The most prominent example in the first category
is the maximum entropy method (maxent) pioneered
by Jaynes (1957, 1968), in which a single distribution
(the one that is most uncertain, or has the highest
entropy) is selected from the set of all possible dis-
tributions that are consistent with the given informa-
tion. This approach was further developed by Ireland
and Kullback (1968), who were the first to approx-
imate a discrete joint distribution given information
on the lower-order component distributions. Lowell
(1994) also used maxent to specify a joint distribution
given lower-order assessments (e.g., pairwise condi-
tional assessments). More recently, Abbas (2006) and
Bickel and Smith (2006) explored the use of maxent
to facilitate the modeling of dependence.

A closely related approach is the specification of a
copula (Sklar 1959), which encodes the dependence
between marginal distributions. For example, Jouini
and Clemen (1996), Frees et al. (1996), and Clemen
and Reilly (1999) all used copulas to construct joint
distributions based on lower-order assessments. In
the copula-based approach, the continuous joint dis-
tribution is often discretized to facilitate modeling

within a discrete decision-tree framework. In this
paper, we compare our proposed methodology to the
normal-copula (NC) approach, illustrated by Clemen
and Reilly (1999) (hereafter, CR).

In the second category, sensitivity procedures have
been developed to explore portions of the set of pos-
sible joint distributions. For example, Lowell (1994)
developed a sensitivity analysis procedure to iden-
tify important pairwise conditional probability assess-
ments. As discussed above, CR proposed the use of
a normal copula, characterized by pairwise correla-
tion coefficients. They then perturbed the correlation
matrix to explore a set of possible joint distribu-
tions. This set is restricted to joint distributions that
can be modeled with a normal copula. Reilly (2000)
developed a sensitivity approach that uses synthetic
variables based on a pairwise correlation coefficient
matrix.

Finally, in the third category, robust procedures
such as maximin or robust optimization (Ben-Tal et al.
2009) evaluate decisions based on their worst possible
outcomes. We do not directly address these methods.
We note, however, that identifying the worst pos-
sible joint distribution is often difficult. Our proce-
dure could be used in a robust setting to “stress test”
decisions.

This paper is organized as follows. Section 2 des-
cribes a new procedure to generate joint probabil-
ity distributions when only partial information is
available. Section 3 introduces an illustrative exam-
ple that we use to demonstrate our approach.
Section 4 applies our new procedure to this exam-
ple. Section 5 concludes and discusses future research
directions.

2. Proposed Approach
Montiel (2012) developed the JDSIM procedure, and
Montiel and Bickel (2012) showed how JDSIM can be
used to generate random collections of joint distri-
butions. In this paper, we demonstrate how to use
JDSIM to model decision problems with incomplete
information and compare our procedure to the use
of copulas. In this section, we summarize JDSIM and
refer the interested reader to Montiel and Bickel (2012)
for additional details.

JDSIM samples from the set of all possible discrete
joint distributions that are consistent with the given
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information, provided that this information can be
described by a set of linear constraints. In this way,
JDSIM provides not one, but a collection of discrete
joint distributions under which the decision can be
evaluated. The procedure begins with the specifica-
tion of linear constraints on the joint distribution (e.g.,
specification of marginal probabilities or pairwise cor-
relations) and the creation of a convex polytope �,
the “truth set,” that matches the given information.
By “truth” we mean that any distribution within this
set is consistent with the assessments and therefore
could be the “true” joint distribution.

We illustrate the characterization of � using a
simple example with two binary random variables,
V1 and V2. This distribution has four joint events
(Figure 1(a)), whose probabilities must be positive
and sum to one (Figure 1(b)). The truth set can be
expressed as a hyperplane in four dimensions or
as a full-dimensional polytope in three dimensions
(Figure 1(c)). We can constrain � to match marginal
assessments such as P4V2 = Up5 = P1 + P3 = 006, as
shown in Figure 1(d). When constraints are consistent,
nonredundant, and nondegenerate, each constraint
reduces the dimension of � by one. Then, adding a
second marginal constraint will reduce � to a one-
dimensional line, and adding a correlation constraint
will reduce � to a single point. Note that the addition
of inconsistent constraints (assessments) produces an
infeasible set. Hence, for the remainder of this paper,
we assume that all assessed information is consistent
such that � is not empty.

Formally, we can define the truth set as � =

8p � Ap = b1p ≥ 09, where A ∈ �m1n is a matrix of m
rows and n columns, b ∈ �m is a column vector of
assessed information, and p ≥ 0 is a vector that repre-
sents the joint probability distribution. The linear sys-
tem, Ap = b, defining the truth set from Figure 1 is
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2.1. Truth Set Definition
We now introduce the notation that we use to
define �. We organize this notation into three groups:
indices and sets, data, and explored variables. Indices and

sets describe the notation used to create the struc-
tural constraints. Data represents the input informa-
tion. Explored variables are the probabilities of the joint
events that define the discrete joint distributions.

2.1.1. Notation.
Indices and Sets:

�: Ordered set of random variables indexed
by i = 11 0 0 0 1 v.

Ɔi: Ordered set of possible outcomes for
random variable i indexed by ri =

1121 0 0 0 1 �Ɔi�.
�i

ri
∈Ɔi: Realization for random variable i having

outcome ri.
�: Ordered set of all joint outcomes, �=Ɔ1 ×

Ɔ2 × · · · ×Ɔv.
�k ∈�: Joint realization �k = 4�1

r1
1�2

r2
1 0 0 0 1�v

rv
5

indexed by k = 1121 0 0 0 1
∏v

i=1 �Ɔi�.
��i

ri
⊂�: Proper subset ��i

ri
= 4�k ��k ∈�1�i

ri
∈�k).

Data:

q�i
ri

: Probability that random variable i obtains the
value �i

ri
.

�i1 j : Rank correlation between random variables i

and j .

Explored Variables:

p: Vector of joint probabilities to be explored.
p�k

∈ p: Probability of the discrete joint outcome �k.

2.1.2. Illustration of the Notation. To illustrate
the notation, we use the example in Figure 1.1 The set
of random variables �= 4V11V25 is indexed as i = 112.
The set of possible outcomes (i.e., branches on the
decision tree) for V1 and V2 are Ɔ1 = 4High, Low) and
Ɔ2 = 4Up, Down), respectively. These sets are indexed
as r1 = 112 for High or Low and r2 = 112 for Up
or Down, respectively. The notation �i

ri
refers to par-

ticular realizations (i.e., to particular branches). For
example, �1

r1
= High, �1

r2
= Low, �2

r1
= Up, and �2

r2
=

Down. In this example, the set of all joint outcomes is
defined as � = 4�11�21�31�45, where �1 = 4�1

r1
1�2

r1
5,

�2 = 4�1
r1
1�2

r2
5, �3 = 4�1

r2
1�2

r1
5, and �4 = 4�1

r2
1�2

r2
5. The

proper subset ��2
r1

= 4�11�35 includes the elements of

1 See the online supplement for a spreadsheet illustrating our
notation and constraints, available at http://dx.doi.org/10.1287/
deca.1120.0252.
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Figure 1 Example Characterization of the Truth Set �

(a) Probability tree; four joint events (b) Probabilities sum to one; P1 + P2 + P3 + P4 = 1

(c) Projection to 3D; P1 + P2 + P3 ≤ 1 (d) Add marginal   information; P1 + P3 = 0.6
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� for which realization �2
r1

has obtained (i.e., the first
and third branches in Figure 1).

We require the joint probabilities to sum to one,
which implies that p�1

+ p�2
+ p�3

+ p�4
= 1. Like-

wise, the assessed probability q�2
r1

≡ P4V2 = Up5 =

P4V1 = High, V2 = Up5+P4V1 = Low, V2 = Up5= p�1
+

p�3
= 006. The rank correlation �112 between V1 and

V2 was not used in Figure 1. Finally, the vector p =

4p�1
1 p�2

1 p�3
1 p�4

5≡ 4P11P21P31P45 represents a feasible
discrete joint probability distribution, which we will
explore with our simulation procedure.

We now describe general forms of linear constraints
that we consider in this paper.

2.1.3. Constraints for Necessary and Sufficient
Conditions. First, we require p = 4p�1

1 p�2
1 0 0 0 1 p����

5

to be a probability mass function (pmf). Equations
(2a) and (2b) accomplish this by requiring the ele-
ments of p to sum to one and be nonnegative,

respectively. In our matrix notation, the first row of
A is a vector of ones, and the first element of b is a
one, as in Equation (1). If no additional constraints are
included, then � is the unit simplex, which is compact
and convex. Therefore, the addition of other linear
constraints will maintain the convexity of �:

∑

�k∈�

p�k
= 11 (2a)

p�k
≥ 01 ∀�k ∈�0 (2b)

2.1.4. Constraints for Marginal Distributions.
Equation (3) constrains � to match the marginal
assessments 4q�i

ri
5. This equation can be extended to

cover pairwise, three-way, or higher-order joint prob-
ability information as long as the assessed beliefs are
consistent. In this case, A includes a row of zeroes
and ones, the arrangement of which depends upon
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the random variable in question (see Equation (1)),
and b adds one parameter q�i

ri
for each constraint:

∑

�k∈��iri

p�k
= q�i

ri
∀ i ∈�1 �i

ri
∈Ɔi0 (3)

2.1.5. Constraints for Rank Correlations. Equa-
tion (4a) matches any rank correlation information
(see Appendix A) that we might have, where we
have used the definition of rank correlation provided
by Nelsen (1991) and MacKenzie (1994). The �

4i1 j5
�k

are coefficients calculated using Equations (4b), (4c),
and (4d). Thus, Equation (4a) is linear in the joint
probabilities. We now briefly discuss the other com-
ponents of Equation (4a). Below, we show how to use
Equation (4a) within the context of our example.

Equation (4c) corresponds to the H -volume defined
by Nelsen (2005), and B�k

= 6I�k
4Vi5 × I�k

4Vj57 is the
rectangular area defined by interval (4d).

∑

�k∈�

�4i1 j5
�k

p�k
=

�i1 j + 3

3
∀ i1 j ∈�1 (4a)

�4i1 j5
�k

=
V4xy52 6B�k

7

q�+

k 4Vi5
· q�+

k 4Vj 5

∀�k ∈� and i1 j ∈�1 (4b)

V4xy52 6B�k
7= 4pi+k · p

j+

k 52
− 4pi+k · p

j−

k 52

− 4pi−k · p
j+

k 52
+ 4pi−k · p

j−

k 521 (4c)

I�k
4Vi5≡ 6pi+k 1 pi−k 7 and I�k

4Vj5≡ 6p
j+

k 1 p
j−

k 70 (4d)

The cumulative probabilities pi+k = P4Vi ≤ �+

k 4Vi55
and pi−k = P4Vi ≤�−

k 4Vi55 are defined such that �+

k 4Vi5
is the marginal outcome �i

ri
of random variable i at

the joint realization �k, and �−

k 4Vi5 is the marginal
outcome �i

ri−1 of the random variable i given the
joint realization �k. Hence, �i

ri−1 is the marginal out-
come immediately smaller than �i

ri
in the marginal

distribution of the random variable i. Finally, q�+

k 4Vi5
=

P4Vi = �+

k 4Vi55 is the marginal probability of vari-
able Vi, having the outcome �i

ri
at the joint

realization �k.
Equation (4a) requires that the marginal probabili-

ties of Vi and Vj are known. Returning to our previous
example in Figure 1, if we assume q�1

r1
= 007 and q�2

r1
=

006, then the truth set is reduced to a line with end-
points 400310041003105 and 400610011010035. The coef-
ficients in Equation (4a) are

�41125
�1

=
41·152 −41·00452 −4003·152 +4003·00452

007 ·006
=10821

�41125
�2

=
41·00452 −41·052 −4003·00452 +4003·052

007 ·004
=00521

�41125
�3

=
4003·152 −4003·00452 −40·152 +40·00452

003·006
=00421

�41125
�4

=
4003·00452 −4003·052 −40·00452 +40·052

003·004
=00120

Hence, the rank correlation constraint is given by

1082·p�1
+0052·p�2

+0042·p�3
+0012·p�4

=
�i1 j +3

3
0 (5)

Within the truth set, feasible rank correlations
range from 0.54 at 400610011010035 to −0036 at
400310041003105. Specifying a particular correlation
within this range would reduce the truth set to a sin-
gle point, uniquely specifying a joint distribution p.

2.2. Sampling �
After characterizing �, we uniformly sample p from
the truth set using JDSIM. Our algorithm adapts the
hit-and-run sampler (Smith 1984), which is the fastest
known algorithm to uniformly sample the interior of
an arbitrary polytope. The goal of this procedure is to
create a discrete representation of � that replicates the
dispersion of the distributions within the set. Figure 2
provides a graphical representation of the algorithm
in two dimensions. Our procedure was explained in
detail in Montiel and Bickel (2012), but we briefly sum-
marize it here for convenience. The interested reader
should see Montiel and Bickel (2012) for technical
details, including convergence properties and guid-
ance regarding the required number of samples.

The sampler is initialized (Step 1) by generating an
arbitrary point xi ∈ � and setting the counter i = 0.
Step 2 generates a set of directions D ⊆ �n using an
uncorrelated multivariate standard-normal distribu-
tion and standardizing the directions. Step 3 selects
a uniformly distributed direction di ∈ D. Step 4 finds
the line L=�∩ 8x � x = xi +�di1� a real scalar} gener-
ated by extending the direction di in both directions
until the boundary of � is reached. Step 5 selects a
random point xi+1 ∈ L uniformly distributed over the
line. Finally, Step 6 evaluates the counter and stops
if i =N (where N is the desired number of samples);
otherwise the counter is incremented by one and the
sampler returns to Step 2.

It is important to bear in mind that each sam-
pled point is a complete joint pmf. We calculate the
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Figure 2 Illustration of the Hit-and-Run Sampler in Two Dimensions

element-wise average of all sampled joint distribu-
tions and refer to this as the average of sampled
observations (ASO). Because the ASO is a convex
combination of points in �, and � is convex, the ASO
is a feasible joint distribution in �.

3. Illustrative Example
We now describe the illustrative example that we
use to demonstrate our procedure. The Eagle Air-
lines example was introduced by Clemen (1996) and
later extended by Clemen and Reilly (1999) and Reilly
(2000). See Figure 3. We describe the example with an
excerpt from Reilly (2000, p. 559):

Dick Carothers, the owner of Eagle Airlines, is decid-
ing whether to invest 0 0 0$521500 in a money market or
to expand his fleet with the purchase of [an airplane;
we will refer to this as the “Expand” alternative]. His
decision criterion is whether the new plane will gener-
ate more profit than a money market alternative. The
influence diagram in [Figure 3] illustrates the relevant
variables. 0 0 0

The profit function is given by: Profit =

Total Revenue − Total Cost1 where

Total Revenue

= Charter Ratio ∗ Hours Flown ∗ Charter Price

+ 41 − Charter Ratio5 ∗ Hours Flown ∗ Capacity

∗ Number of Seats ∗ Price Level1

Total Cost

= Hours Flown ∗ Operating Cost + Insurance

+Purchase Price∗Percentage Financed∗Interest Rate1

where Charter Price is 3025 ∗ Price Level and the
Number of Seats is five. Computing the profit using
the base values [described below], Carothers’s annual
profit is $9,975, which is $5,775 more than the mini-
mum of $4,200 (based on the opportunity cost of cap-
ital). The deterministic model indicates that Carothers
should expand his fleet now. Some of the inputs, how-
ever, are highly variable, and these could possibly
lower the profit below the $4,200 benchmark.

Based on sensitivity analysis, Reilly (2000)
showed that four variables most affect the decision:
Price Level (PL), Hours Flown (H ), Capacity (C), and
Operating Cost per Hour (O). CR provided the 0.10
(Low), 0.50 (Base), and 0.90 (High) fractiles for each
uncertainty and the Spearman rank correlations
between each pair of uncertainties, which we repeat
in Table 1.

The noncritical uncertainties are fixed at their
base values, which are Charter Ratio = 50%, Percentage
Financed = 40%, Interest Rate = 1105%, Insurance =

$201000, Purchase Price = $871500, Number of Seats = 5,
and Charter Price = 3025 ∗ Price Level.

To apply their NC procedure, CR assumed that
the marginal distributions shown in Table 1 are from
known families. In particular, they assumed that PL
and H are scaled-beta distributions, C is beta, and O
is normally distributed. CR’s parameter assumptions
for each uncertainty are presented in Table 2.

With this information, CR proposed a single contin-
uous joint probability density function (pdf), based on
an NC, and discretized it using the Extended Pearson–
Tukey (EPT) technique (Keefer and Bodily 1983,
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Figure 3 Influence Diagram for Eagle Airline’s Decision
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Pearson and Tukey 1965). The EPT technique weights
the 0.05, 0.50, and 0.95 fractiles with probabilities
of 0.185, 0.630, and 0.185, respectively. CR’s discrete
cumulative distribution function (cdf) for the Expand
alternative is shown in Figure 4 as a solid black line.
This figure should be compared to CR’s “discrete
approximation” in their Figure 5.

Because CR used the EPT technique, they fixed the
probabilities for marginal and conditional distribu-
tions, as described above, and solved for the 0.05,
0.50, and 0.95 fractiles. In our simulation procedure,
we fix the values and solve for the probabilities. This
approach is helpful for comparing our procedure to
an approximation such as maxent, which is not a

Table 1 Ranges and Spearman Correlations for Critical Input
Variables

Fractile

Low Base High Spearman correlations

Uncertainty 0.10 0.50 0.90 PL H C O

PL $95 $100 $108 1
H 500 800 1,000 −0050 1
C 40% 50% 60% −0025 0050 1
O $230 $245 $260 0 0 0025 1

Table 2 Marginal Distributions for Eagle Airlines

Uncertainty Distribution Parameters Range

PL Scaled beta �= 91 �= 15 6$810941$1330967
H Scaled beta �= 41 �= 2 66609111,1350267
C Beta �= 201 �= 20 60117
O Normal �= 2451 � = 11072 4−�1+�5

function of values and instead solves for probabilities.
Therefore, to better compare our procedure to that
of CR, we have discretized their joint pdf by fixing
the marginal values at the 0.05, 0.50, and 0.95 frac-
tiles (using their pdf assumptions in Table 2) and then
solving for probabilities using moment matching (see
Appendix B). This discrete cdf is shown in Figure 4
as the solid gray line. Although the two approaches
are not identical, the discretizations are very close. We
use the moment matching cdf in the remainder of this
paper.

One potential difficulty with CR’s procedure, or
that of Wang and Dyer (2012), is that it does not
preserve the original pairwise correlation assess-
ments. This occurs because the discretization with
three points reduces the possible correlation range,
producing a new correlation matrix bounded by
6−0074100747. Our approach, in contrast, preserves the
assessed correlations. Of course, the expert would
need to understand that the correlation range is not
6−1117 when they were assessing the rank correlation
between discrete random variables with only three
possible outcomes. Table 3 presents the rank correla-
tion matrix implied by CR’s discrete cdf (the gray line
in Figure 4). See Appendix C for more detail.

Table 3 NC Implied Spearman Correlation Matrix

PL H C O

PL 0074
H −0038 0074
C −0019 0038 0074
O 0 0 0019 0074



Montiel and Bickel: Decision Making with Partial Information
336 Decision Analysis 9(4), pp. 329–347, © 2012 INFORMS

Figure 4 Eagle Airlines cdf, Under Original Discretization (Black) and New Discretization (Gray)
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4. Application to Eagle
Airlines Decision

In this section, we apply our JDSIM procedure to
the Eagle Airlines case. We consider three informa-
tion cases. The first case assumes we have information
regarding only the marginal probabilities. The sec-
ond case includes the previous marginal probabilities
and adds information regarding the rank correlation
between PL and H . The final case is equivalent to the
original problem as presented by CR, and includes all
the marginal assessments and pairwise correlations.
To facilitate comparison of our results to those of CR,
our JDSIM procedure uses the correlations presented
in Table 3.

We begin by assuming that we have information
regarding only the marginal assessments. To compare
our procedure to that of CR, we also use the EPT tech-
nique. In addition to the 0.50 fractile, the EPT tech-
nique requires the 0.05 and 0.95 fractiles, which were
not provided by CR. We estimate these fractiles using
CR’s distributional assumptions in Tables 1 and 2 and
present the results in Table 4. We now assume that
both the NC and JDSIM methods begin with Table 4.
It is important to understand that this “preprocess-
ing” is only done so that we can compare our proce-
dure with CR. In practice, one would simply need to
assess the information provided in Table 4.

Table 4 Fractiles Used in Eagle Airlines Example

Fractile

Low 4l5 Base 4b5 High 4h5

Uncertainty 0.05 0.5 0.95

PL ($) 93047 100 110005
H (hours) 432092 800 11053060
C (%) 37014 50 62086
O ($) 225072 245 264028

4.1. Case 1: Given Information Regarding
Marginals Alone

Under the NC procedure, we would use the marginal
assessments provided in Table 4. We would next need
to assume the marginal distributions belonged to a
particular continuous family. This was done by CR
yielding their assumptions in Table 2. Because we are
assuming that dependence information is unavailable,
it is unclear how to specify the correlation matrix. For
the benefit of the comparison, and following common
practice, we assume that all correlations are zero.

The JDSIM method, in contrast, does not require
the specification of marginal pdf families or a correla-
tion matrix. Rather, we form a polytope that contains
all possible joint distributions matching the marginal
assessments given in Table 4. The polytope describ-
ing these marginal assessments has 72 dimensions,
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Figure 5 Risk Profile Range Given Only Marginal Information, Minimum and Maximum Probability Bounds (Dashed), Theoretical Bounds (Solid),
ASO (Black), and NC (Gray)
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resulting from 81 joint probabilities (four random
variables with three outcomes each), one constraint
that requires the probabilities to sum to one, and eight
constraints to match the marginal assessments 481 −

1 − 8 = 725.
The polytope � is defined using Equations (2a),

(2b), and (3). Equations (2a) and (2b) constrain the
joint probabilities p�k

∈ p to sum to one and to be
nonnegative. Equation (3) selects subsets of the joint
probabilities and constrains their sum to be equal to
the marginal assessments. For example, if we order
the random variables as 4PL1H1C1O5, each having
values 4l1 b1h5, there are 81 joint events. Using dot
notation, 4h1 ·1 ·1 ·5 refers to the 27 joint events with
PL equal to 110.05 (the 95th percentile). From the
marginal assessments, we know that ph1 ·1 ·1 · = 00185,
which defines Equation (6). Similar equations can be
defined for the remaining 11 marginal assessments
(12 in total). However, four of these constraints are
redundant given Equation (2a), reducing the total
number of linear constraints to nine.

ph1 ·1 ·1 · =
∑

i∈F

∑

j∈F

∑

k∈F

ph1 i1 j1 k = 001851 ∀ F ≡ 8l1 b1h90 (6)

We apply the JDSIM procedure to the polytope
to create a discrete representation of � by sampling
10 million discrete joint distributions (run time of

five hours using Mathematica 8 on an Intel central
processing unit Q6700 at 2.67 GHz with 8 GB of ran-
dom access memory), all of which are consistent with
the information provided by CR. This sample size is
more than sufficient to ensure uniform coverage of �.
For a full analysis of JDSIM’s required sample size,
we refer the reader to Montiel and Bickel (2012) and
Montiel (2012).

We calculate the mean and standard deviation
of profit for each sampled joint distribution. Addi-
tionally, we calculate the frequency with which the
Expand alternative yields less than the Money Market
(MM) threshold of $4,200. We refer to this frequency
as the “investment risk.” Based on our 10 million dis-
tributions, we calculate frequency distributions for the
mean profit, the standard deviation of profit, and the
investment risk. Table 5 shows these percentiles along
with their theoretical lower bound (LB) and upper
bound (UB), which we describe shortly. This table
should be compared to CR’s Table 5.

The observed mean profit ranges from $10,160 to
$14,340, with an average (�) and standard deviation (�)
of $12,303 and $496, respectively. The expected profit
under the NC is $12,326. Our observed profit range
and the percentiles closely match the results of CR’s
sensitivity results (see their Table 5).
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Table 5 Percentiles for Mean Profit, Standard Deviation of Profit, and Investment Risks for JDSIM Joint Distributions Given Only Marginal
Information

Percentiles Statistics

LB 0% 10% 25% 50% 75% 90% 100% UB � �

Mean ($) 4,332 10,160 11,667 11,968 12,304 12,637 12,940 14,340 21,750 12,303 496
Std. dev. ($) NA 17,300 21,750 22,613 23,576 24,552 25,456 29,580 NA 23,591 1,444
Inv. risk (%) 0.00 19.50 26.25 27.65 29.30 31.12 32.79 40.95 74.00 29.42 2.54

We refer to the 0th and 100th percentiles as “proba-
bility bounds” because there could exist cdfs in � that
result in profits outside of this range. However, we
did not observe them in 10 million samples. Because
the minimum expected profit that we sampled was
$10,160, every simulated joint distribution had a mean
profit greater than the value of the MM alternative.
Thus, in this case, the assessment of probabilistic
dependence or differing marginal distributions, which
still match the assessments in Table 4, is very unlikely
to change the recommendation that Eagle Airlines
should expand (assuming they are risk neutral).

The standard deviations of our sampled cdfs
ranged from $17,300 to $29,580, with an average
of $23,641. The standard deviation of profit under
the NC is $23,605. On the high end, our results
closely match those of CR. However, the smallest
standard deviations in our sample were larger than
CR’s. We conjecture that this result is related to dif-
ferences in our discretization procedure and CR’s
marginal/copula assumptions. Referring back to Fig-
ure 4, we see that our discretization procedure (fixed
values) results in a slightly wider cdf (longer tails)
than CR’s approach (fixed probabilities). Furthermore,
their marginal distributions (see Table 2) are either
normal or close to normal, implying that they have
very thin tails. Likewise, CR modeled dependence
with a normal copula, which also enforces thinner
tails. JDSIM is not constrained by these assumptions
and is therefore sampling from distributions that are
most likely more spread and contain nonzero higher
moments (e.g., skewness and kurtosis).

Table 5 indicates that investment risk, which
averaged 29.42%, ranges from 19.50% to 40.95%.
Although the Expand alternative’s expected profit
always exceeds the MM, there may be a large prob-
ability of underperforming this benchmark. This sur-
prisingly large range is driven by the underlying

dependence structure, which highlights the impor-
tance of modeling and assessing dependence. The NC
investment risk is 38.05%. The most significant differ-
ence between the ASO and NC cdfs is at the level of
individual fractiles—their first two moments are rela-
tively close.

The LB and UB in Table 5 were derived from a
linear program (LP) described in Appendix D. We
provide these hard bounds for the mean profit and
investment risk only. Determining the minimum and
maximum possible standard deviation requires solv-
ing an NP-hard problem, and this was not attempted.
The expected-profit LB is $4,332, which is greater than
the MM. Thus, it is impossible to generate a joint
distribution matching the assessments in Table 4 that
would underperform the MM investment.

The LB and UB are quite distant from the minimum
($10,160) and maximum ($14,340) expected profits.
The joint distributions associated with these hard
bounds contain many events with zero probability.
For example, the joint distributions for the expected
profit LB and UP are, respectively,

8pl1 h1 l1h = 001851 pb1 b1 b1 b = 00631 ph1 l1h1 l = 001851

0 otherwise9 and

8pl1 l1 l1h = 001851 pb1 b1 b1 b = 00631 ph1h1h1 l = 001851

0 otherwise90

These distributions, consisting mostly of zeros, are
located at the vertices of the polytope. As such, they
are geometrically extreme and unlikely to be sampled.
They are also extreme from a dependence perspective,
because they assume perfect dependence between the
random variables. For example, under the minimum
expected profit distribution, if PL is at its base value,
then H , C, and O are certain to be at their base values
as well.
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This difference between the minimum and maxi-
mum sampled values (i.e., the probability bounds)
and the theoretical bounds is explained by what we
call the “sea urchin” effect (Appendix E). In high-
dimension polytopes, the vertices become “thin” and
comprise a very small portion of the total volume.
Hence, JDSIM is unlikely to sample them. We do not
believe this is a limitation of the sampling method.
To the contrary, these distributions are extreme. If the
underlying dependence was as strong as the distri-
butions above require (e.g., perfect), we believe the
expert would know this and could therefore express
it as a constraint. Under these conditions, the JDSIM
methodology would only sample distributions that
included the expressed level of dependence.

The cdfs for this case are presented in Figure 5. The
ASO cdf is the solid black line, and the independence
cdf (based on an NC) is the solid gray line. The dot-
ted lines are the minimum and maximum probability
bounds that were sampled during our 10 million tri-
als. These bounds are not individual cdfs, but repre-
sent the minimum (lower line) and maximum (upper
line) cumulative probabilities that were sampled at
each profit level. Likewise, the thin solid lines repre-
sent the theoretical minimum and maximum. These
bounds were calculated using the LP described in
Appendix D. All cdfs must fall within these latter
bounds. The vertical dashed line denotes the MM
value, and a vertical solid line denotes zero profit. The
chance of underperforming MM matches the invest-
ment risk in Table 5.

We pause here to emphasize the scope and impor-
tance of our results. We have sampled 10 million joint
distributions from the set of all discrete joint distri-
butions matching the marginal constraints (Table 4).
In other words, we have sampled from the set of
all possible marginal distributions and dependence
structures, rather than a set limited to marginals from
particular families (e.g., beta) and whose dependence
structure can be defined with a particular copula
(e.g., normal). These 10 million joint distributions
fall within the bounds denoted by the dotted lines.
The (NC-based) independence cdf falls within these
bounds, but is rather extreme (relative to the probabil-
ity bounds) for profits between −$31000 and $25,000.
The ASO cdf might be thought of as being more rep-
resentative of the set of possible joint distributions

than the independence cdf. The ASO and the indepen-
dence cdfs differ rather dramatically at a profit level
of $4,200, which is the MM benchmark.

4.2. Case 2: Given Information Regarding
Marginals and One Pairwise Correlation

This section analyzes the case where the dependence
structure is constrained by a single pairwise correla-
tion. Specifically, we consider CR’s implied correla-
tion between PL and H , which is equal to −0038 (see
Table 3). We make no assumptions regarding the other
five pairwise correlations. The truth set is generated
using Equations (2a), (2b), (3), and (4a). As mentioned
in §4.1, Equations (2a), (2b), and (3) ensure the sam-
pled points are pmfs that match the marginal assess-
ments. We add one more constraint (Equation (4a)) to
fix the rank correlation between PL and H .

To illustrate Equation (4a), we describe the con-
struction of one of the 81 coefficients for the joint
events. Using the notation from §2.1, the 50th joint
event corresponds to (b1h1 b1 b) and is described as
�50 = 4PL = $1001H = 11053061C = 50%1O = $2455.
Equations (4a)–(4d) then yield

B�50
= 6I�50

4PL5× I�50
4H57= 6pPL+

50 1 pPL−

50 7× 6pH+

50 1 pH−

50 7

= 6008151001857× 610010081571

V4xy52 6B�50
7

q�+

504PL5
q�+

504H5

=
4pPL+

50 pH+

50 52 −4pPL+

50 pH−
50 52 −4pPL−

50 pH+

50 52 +4pPL−
50 pH−

50 52

P4PL=1005P4H =11053065

= 4400815 · 10052
− 400815 · 0081552

− 400185 · 10052

+ 400185 · 00815525 · 40063 · 001855−1

= 108150

Calculating similar coefficients for all 81 joint events
defines Equation (4a) and yields

000342pl1 l1 ·1 · + 00185pl1 b1 ·1 · + 003358pl1 h1 ·1 · + 00185pb1 l1 ·1 ·

+ pb1 b1 ·1 · + 10815pb1h1 ·1 · + 003358ph1 l1 ·1 · + 10815ph1b1 ·1 ·

+ 302942ph1h1 ·1 · =
�PL1H + 3

3
0

The maximum correlation occurs at pl1 b1 ·1 · = pl1 h1 ·1 · =

pb1 l1 ·1 · = pb1h1 ·1 · = ph1 l1 ·1 · = ph1b1 ·1 · = 0, pl1 l1 ·1 · = 001851
pb1 b1 ·1 · = 00631 ph1h1 ·1 · = 00185 and has a value of 0.74,
as shown in Table 3.
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Table 6 Percentiles for Mean Profit, Standard Deviation of Profit, and Investment Risks for JDSIM Joint Distributions Given Marginal Information
and One Pairwise Correlation Coefficient

Percentiles Statistics

LB 0% 10% 25% 50% 75% 90% 100% UB � �

Mean ($) 4,877 9,215 10,376 10,641 10,919 11,198 11,441 12,570 16,691 10,916 414
Std. dev. ($) NA 16,500 19,820 20,499 21,269 22,062 22,833 26,180 NA 21,296 1,174
Inv. risk (%) 0.57 20.50 25.87 27.40 29.25 31.17 32.99 42.20 73.43 29.36 2.78

We apply the JDSIM procedure to the new poly-
tope and create a discrete representation of the new
truth set by sampling 10 million possible joint dis-
tributions. Each sampled distribution has marginals
equal to 0.185, 0.63, and 0.185 of 4l1 b1h5, respectively,
and rank correlation �PL1H = −0038. Table 6 summa-
rizes our results.

The sampled mean profit ranges from $9,215 to
$12,570, with an average value of $10,916 and a
standard deviation of $414. The NC expected profit
is also $10,916. The distribution of the mean profit
shows that under the new information, the Expand
alternative is less attractive than before. This occurs
because the correlation between PL and H is nega-
tive; higher prices result in fewer hours being flown.
However, purchasing the plane is still more attrac-
tive than investing in the money market, even at the
theoretical bounds (LB and UB). The standard devi-
ations are slightly lower than in Case 1 because we

Figure 6 Risk Profile Range Given Marginal Information and One Pairwise Correlation Coefficient, Minimum and Maximum Probability Bounds
(Dashed), Theoretical Bounds (Solid), ASO (Black), and NC (Gray)
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have introduced negative dependence between PL

and H . The investment risk now ranges from 20.50%
to 42.20%, with an average of 29.36%.

The cdfs for this case are presented in Figure 6. The
ASO cdf assumes that �PL1H = −0038 and all other cor-
relations are unspecified. The NC cdf assumes that
�PL1H = −0038 and all other correlations are zero. As in
Case 1, the NC cdf is near the probability bounds for
profits of −$31000 to $25,000. Again, the ASO seems
to be more representative than the NC of the set of
possible distributions.

4.3. Case 3: Given Information Regarding
Marginals and All Pairwise Correlations

In this section, we adopt all of the information
provided by CR and used in their NC approach.
Specifically, we use the marginal assessments from
the EPT discretization, given in Table 4, and the
implied correlations from Table 3. The implied
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Table 7 Percentiles for Mean Profit, Standard Deviation of Profit, and Investment Risks for JDSIM Joint Distributions Given Marginal Information
and all Pairwise Correlation Coefficients

Percentiles Statistics

LB 0% 10% 25% 50% 75% 90% 100% UB � �

Mean ($) 12,049 12,448 12,583 12,620 12,662 12,704 12,741 12,910 13,271 12,662 62
Std. dev. ($) NA 18,530 19,767 20,063 20,400 20,750 21,051 22,280 NA 20,404 499
Inv. risk (%) 9.55 18.45 24.63 25.98 27.54 29.18 30.76 36.50 63.72 27.64 2.36

correlations are used to make the comparison to CR
as fair as possible. The new polytope is defined using
Equations (2a), (2b), (3), and (4a), as illustrated in
§§4.1 and 4.2. To the previous 10 constraints (and
the nonnegativity constraints), we add five new con-
straints to fix the values of all the pairwise correla-
tions, defining a 66-dimensional polytope.

Table 7 displays a summary of our 10 million sam-
ples of the new polytope using JDSIM. The additional
constraints have significantly affected the mean profit
distribution. The minimum and maximum sampled
mean profits are now $12,448 and $12,910, respec-
tively, with an average of $12,662 and a standard devi-
ation of $62. The NC expected profit is $12,678, which
matches the value given in Figure 4. Additionally,
the difference between the theoretical mean profit UB
and LB is only $1,222, which is considerably less than
in our previous cases. What little difference there is

Figure 7 Risk Profile Range Given Marginal Information and All Pairwise Correlation Coefficients, Minimum and Maximum Probability Bounds
(Dashed), Theoretical Bounds (Solid), ASO (Black), and NC (Gray)
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between mean profits is due to dependence in the
joint distribution that cannot be described by pairwise
correlations.

The new distribution of the standard deviation of
profit ranges from $18,530 to $22,280, with an aver-
age $20,404. The distribution of the investment risk
has been shifted toward lower values (although the
LB has increased), with a new range from 18.45% to
36.50%. The average investment risk is now 27.64%.

The bounds for the cdfs when all pairwise correla-
tions are known are shown in Figure 7. Both the prob-
ability and the absolute boundaries are narrower than
before. CR’s NC cdf falls slightly outside of the prob-
ability bounds for profit values of −$21000 to $25,000.
This suggests that the NC approach, which specifies a
single joint distribution, may not generate an approx-
imation that is representative of the set of all distri-
butions matching the assessed information.
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We conjecture that the extreme behavior of the NC
with respect to the probability bounds is related to
the structure provided by the normal copula. The nor-
mal pdf has maximum entropy for a given mean and
standard deviation. We suspect that joint distributions
formed with a normal copula are also high in entropy.
Indeed, in our case, CR’s NC cdf and the (not shown)
maximum-entropy cdf (given marginal and all pair-
wise correlations) are very close to each other, with a
maximum absolute difference among the probabilities
of the joint events of 0.0037, whereas the correspond-
ing difference between NC and ASO is 0.1992. A max-
ent joint distribution based on marginals and pairwise
correlations will enforce higher-order dependencies
that are as close to independence as possible. This cdf
will then tend to be an extreme point within our truth
set. As a simple illustration, assume two identical
binary random variables with marginals of 800910019
and unknown correlation. With this information, all
the possible distributions are a convex combination
of 8009101010019 and 800810011001109. Hence, � forms
a line section with center at 800851000510005100059,
whereas maxent is located at 800811000910009100019,
close to the second extreme point.

4.4. Comparing the Three Information Cases
Figure 8, (a)–(c), compares the pdfs (frequencies) of
our sampled expected profits, standard deviations,
and investment risk, respectively. The distribution
for Case 1, using only marginal information, is pre-
sented as the dotted line filled in white. Case 2, using
marginal information and one pairwise correlation
coefficient, is presented as the dashed line filled in
gray. Finally, Case 3, with all marginal information
and pairwise correlation assessments, is presented in
a solid line filled in black. The vertical lines corre-
spond to the probability bounds for each case mark
in dotted (Case 1), dashed (Case 2), and solid lines
(Case 3).

The range of outcomes for Case 1 (only marginals)
stems from our having not constrained marginal fam-
ilies or the dependence structure. The addition of a
negative correlation between PL and H , in Case 2,
shifted the set of possible profits to the left and
narrowed it somewhat. The specification of all pair-
wise correlations, in Case 3, constrained the set

Figure 8 Sampled Distributions for Mean Profit, Standard Deviation
of Profit, and Investment Risk Given Marginals Only
(White), Marginals and One Pairwise Correlation (Gray),
and Marginals and All Pairwise Correlations (Black)
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considerably. The variability that does exist is related
to our marginals’ not having been based on known
families and that higher-order dependencies (beyond
pairwise) were not fixed. This indicates that assessing
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these higher-order distributions (e.g., all three-way
assessments) will not improve the decision.

The investment-risk distributions show less sensi-
tivity to the dependence structure. Although addi-
tional constraints had a significant impact on the
distribution of expected profit and the standard devi-
ation of profit, the probability of it being less than
$4,200 has not changed significantly.

5. Conclusions
Both the JDSIM and the NC approaches provide
methods to model probabilities and decisions when
only partial probabilistic information is available. The
NC approach requires (1) the assumption of marginal
distributions (e.g., Table 2) that fit the provided
assessments (e.g., Table 4) and (2) a copula to spec-
ify a single joint probability distribution. These two
assumptions specify a single joint distribution. JDSIM,
in contrast, explores the set of all joint distributions
that match the available information.

JDSIM provides a flexible and powerful tool to
analyze stochastic decision models when the joint
distribution is incompletely specified. The method-
ology is easy to implement, develops a collection
of joint distributions, and represents a significant
extension to previous approximation models such
as the copula-based approach illustrated by CR. We
demonstrated the JDSIM procedure with a canonical
example based on marginal and pairwise rank corre-
lation coefficients. The methodology can be extended
to more than four random variables, to random
variables with more than three possible outcomes,
and to higher-order conditioning such as three-way
assessments.

On average, the profit joint distributions produced
by JDSIM resulted in expected values and stan-
dard deviations similar to those of NC. The primary
difference, in the case examined here, seems to be dif-
fering estimates for particular cumulative probabili-
ties. For example, the NC cdf produced cumulative
probabilities for midrange profits that were extreme
relative to our sample. This is potentially important
in the Eagle Airlines case because this profit range
included the value of the competing alternative. Thus,
the two methods might produce very different esti-
mates of investment risk (the probability of under per-
forming the competing alternative). This being said,

more research needs to be done to better understand
if it is possible to faithfully represent the JDSIM sam-
ple with a single joint distribution across a range of
applications.

JDSIM’s strength is also a potential weakness,
because the decision is not valued or made under a
single distribution, but rather under thousands (pos-
sibly millions) of feasible distributions. NC provides
a single, approximate distribution, but, as discussed
above, our results suggest that this approximation
may not be representative of the set of possible
joint distributions. The accuracy of the normal copula
approach is an open question, but one that could be
addressed by comparing it to the JDSIM results.

The information provided by this new simulation
procedure provides insight regarding the shape of the
truth set. At this point, we do not claim to know
the likelihood of the distributions in the sampled col-
lection. However, we can clearly state that assum-
ing independence in scenarios with incomplete or
unknown information provides approximations that
are extreme relative to the other distributions in the
truth set. This provides yet another example of the
importance of not ignoring dependence.

Future research will use JDSIM to quantify the
accuracy of common approximation methods such as
maxent. Although maxent is commonly used, its accu-
racy has not been studied carefully. The results pre-
sented in this paper suggest that maxent is a rather
extreme assumption. For example, if a correlation is
not specified, maxent assumes it is zero. In this sense,
maxent may not be representative of the set of all dis-
tributions matching a given set of constraints on the
underlying distributions.
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Appendix A. Spearman’s Correlation Derivation
In this addendum, we derive the Spearman’s correlation
(Equation (4a)) from basic principles. Following Nelsen
(1991, p. 55; 2005, p. 170) we define Spearman’s rank corre-
lation for 4Vi1Vj5 to be the Pearson’s product moment cor-
relation for 4U1V 5= 4F 4Vi51 F 4Vj55. Thus,

�r
Vi1Vj

=
Cov4U1V 5

√

Var4U5 · Var4V 5
0 (A1)

Because U and V are uniform with mean 1/2 and variance
1/12, we have

�r
Vi1Vj

=
E4UV 5−E4U5E4V 5
√

Var4U5 · Var4V 5
=

E4UV 5− 1/4
1/12

= 12 ·E4UV 5− 30 (A2)

Nelsen (1991, p. 55) evaluates E4UV 5 using a copula, where
dC4u1v5= u · v · c4u1v5:

�r
Vi1Vj

= 12
∫ 1

0

∫ 1

0
u · v · dC4u1v5− 3

= 12
∫ 1

0

∫ 1

0
u · v · c4u1v5dudv− 30 (A3)

Equation (A3) is also given by MacKenzie (1994, p. 14).
The following step uses the fact that

∫ 1
0 x dx =

∫ �

0 x dx +
∫ 1
� x dx1 ∀� ∈ 60117, where the functions p−

k 4Vi5 and p+

k 4Vi5
generate a partition of the range of F 4Vi5 over the 60117
interval. The total number of elements in the sum is equal
to the cardinality of � and is indexed by �k:

�r
Vi1Vj

= 12
∫ 1

0

∫ 1

0
u · v · c4u1v5dudv− 3

= 12
∑

�k∈�

∫ p+

k 4Vi5

p−
k 4Vi5

∫ p+

k 4Vj 5

p−
k 4Vj 5

u · v · c4u1v5dudv− 30 (A4)

Equation (A4) appears in MacKenzie (1994, p. 14), but under
the restriction that the 60117 interval is divided into equal
segments. Here, we allow for unequal segments to account
for nonuniform marginals.

Recall that p+

k 4Vi5 and p−
k 4Vi5 are constructed with the

marginal information, which we assume has been pro-
vided, and represents points in the cumulative marginal
distribution F 4Vi5. These functions define the intervals
I�k

4Vi5 and I�k
4Vj5 for every k defining a grid (possibly

uneven). We illustrate the partition with an example pro-
vided in Figure A.1, where the section I�6

4Vi5 × I�6
4Vj5 =

6p+

6 4V151 p
−
6 4V157 × 6p+

6 4V251 p
−
6 4V257 is shaded, assuming the

marginal distributions of Vi and Vj are P4V1 = 05 = 002,
P4V1 = 15 = 004, P4V1 = 25 = 004, and P4V2 = 05 = 003,
P4V2 = 15= 003, P4V2 = 25= 002, P4V2 = 35= 002. The section
is 64002 + 004510027× 64003 + 003510037.

Once the partition is created, we define c4u1v5 to be
uniform inside each partition. Thus, by choosing c4u1v5 =

c4�k4Vi51�k4Vj55 constant for each section on the grid,

Figure A.1 Grid Generated by the Interval I�k 4Vi 5

(1, 1)
P6

+(V1) = 0.6

(0, 1)
(0, 0.6)(0, 0.2)

Section for k = 6

(0, 0)

(0.3, 0)

(0.6, 0)

(0.8, 0)

(1, 0)

P6
+(V2) = 0.6

P6
–(V2) = 0.3

P6
– (V1) = 0.2

V2

V1

where �k4Vi5 is the marginal realization of Vi in the joint
realization �k, we can take it out of the integral, which
yields

�r
Vi1Vj

= 12
∑

�k∈�

∫ p+

k 4Vi5

p−
k 4Vi5

∫ p+

k 4Vj 5

p−
k 4Vj 5

u · v · c4u1v5dudv− 3 (A5a)

= 12
∑

�k∈�

c4�k4Vi51�k4Vj55

·

∫ p+

k 4Vi5

p−
k 4Vi5

∫ p+

k 4Vj 5

p−
k 4Vj 5

u · vdudv− 30 (A5b)

Equations (A5a) and (A5b) are a generalization of Equa-
tion (3.9) of MacKenzie (1994, p. 14), which was derived
under the restriction that the 60117 interval is divided into
equal segments. We now evaluate the integrals and rear-
range terms to make the equation more compact:

�r
Vi1Vj

=
12
4

∑

�k∈�

c4�k4Vi51�k4Vj5566p
+

k 4Vi5p
+

k 4Vj57
2

− 6p+

k 4Vi5p
−

k 4Vj57
2
− 6p−

k 4Vi5p
+

k 4Vj57
2

+ 6p−

k 4Vi5p
−

k 4Vj57
27− 30 (A6)

Nelsen (2005, p. 8) defines the H -volume as

Vx2∗y2 6I�k
4Vi5× I�k

4Vj57

= 6p+

k 4Vi5p
+

k 4Vj57
2
− 6p+

k 4Vi5p
−

k 4Vj57
2

− 6p−

k 4Vi5p
+

k 4Vj57
2
+ 6p−

k 4Vi5p
−

k 4Vj57
20 (A7)

Substituting Equation (A7) into Equation (A6), we get
Equation (A8):

�r
Vi1Vj

= 3
∑

�k∈�

c4�k4Vi51�k4Vj55Vx2∗y2 6I�k
4Vi5× I�k

4Vj57− 30

(A8)
We can interpret the probability of each part of the grid as

the volume assigned, where q�+

k 4Vi5
and q�+

k 4Vj 5
are the length

and width (given by the marginals of Vi and Vj ), respec-
tively, and c4�k4Vi51�k4Vj55 is the height of each subsection,
as shown in Figure A.2:

c4�k4Vi51�k4Vj55=
p�k

q�+

k 4Vi5
· q�+

k 4Vj 5

0 (A9)
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Figure A.2 c4�k 4Vi 51 �k 4Vj 55 Describes the Height of the Section k

(1, 0)

(0.8, 0)

(0.6, 0)

(0.3, 0)

(0, 0)

k = 6

(0, 0.2)

q� + 6(v2)

(0, 0.6)
(0, 1)

(1, 1)
P6

+(V1)

P6
+(V2)

P6
–(V1)

P6
–(V2)

V2

V1

c (�6(v1), �6(v2))

Substituting Equation (A9) into Equation (A8), we obtain
Equation (A10):

�r
Vi1Vj

= 3
∑

�k∈�

p�k

Vx2∗y2 6I�k
4Vi5× I�k

4Vj57

q�+

k 4Vi5
· q�+

k 4Vj 5

− 30 (A10)

We define the parameter �
4i1 j5
�k as

�4i1 j5
�k

=
V4xy52 6I�k

4Vi5×I�k
4Vj57

q�+

k 4Vi5
·q�+

k 4Vj 5

∀�k ∈� and i1 j ∈�0 (A11)

Given the marginals of Vi and Vj , the parameter �
4i1 j5
�k is

a known constant for every subindex k, where q�+

k 4Vi5
=

p+

k 4Vi5− p−
k 4Vi50 Finally, substituting Equation (A11) into

Equation (A10), we get Equation (A12):

∑

�k∈�

�4i1 j5
�k

p�k
=

�i1 j + 3

3
∀ i1 j ∈�0 (A12)

Spearman’s rank correlation is then the weighed sum of
the probabilities, where the weights are constants defined
by the marginal probabilities of Vi and Vj . Therefore, the
Spearman’s rank correlation (Equation (A12)) is linear in the
probabilities and can be expressed as linear equalities.

Appendix B. Moment Matching
Discretization Procedure
CR’s procedure uses the EPT technique to discretize their
continuous joint distribution. Specifically, CR fixed prob-
abilities and then solved for conditional fractiles. This
approach is difficult to compare to the JDSIM procedure,
which fixes values and solves for probabilities. To facili-
tate comparison, we use a different discretization based on
moment matching. We start by discretizing the marginal
distributions using the EPT technique and fix the values of
the 0.05, 0.50, and 0.95 fractiles for all uncertainties. After
discretizing the marginals, we proceed to discretize the con-
ditional distributions using moment matching to find the
respective probabilities (Smith 1993, Bickel et al. 2011).

The joint probability distribution can be decomposed
using Equation (B1):

P4PL1H1C1O5 = P4PL5 · P4H � PL5 · P4C � PL1H5

· P4O � PL1H1C50 (B1)

We start by discretizing P4PL5 using EPT and the values
of the 0.05, 0.50, and 0.95 fractiles with outcomes $93.47,
$100.00, and $110.05, respectively. For these values, we
define the probabilities pPLl 1 pPLb , and pPLh as 0.185, 0.63, and
0.185, respectively. Next, we discretize P4H � PL = $1000005
using the fixed values 843209218001110530609 for H and use
moment matching to find the correct probabilities pHl�b , p

H
b�b ,

and pHh�b . To completely discretize H � PL, we solve Equa-
tions (B2a), (B2b), and (B2c) for the three possible discrete
outcomes of PL:

pHl�b + pHb�b + pHh�b = 11 (B2a)

432092 · pHl�b + 800000 · pHb�b + 11053060 · pHh�b = E6H � PL71 (B2b)

443209252
· pHl�b + 480000052

· pHb�b + 41105306052
· pHh�b = E6H2

� PL70

(B2c)

We discretize P4C � PL1H5 using equivalent equations
matching E6C � PL1H7 and E6C2 � PL1H7 and equivalent
coefficients based on the fixed values for C to define
pCl � 0001 p

C
b � 000, and pCh � 000. The complete discretization of P4C �

PL1H5 requires solving a total of nine moment matching
problems, one for each joint outcome of 8PL1H9. Finally, a
similar procedure is applied to P4O � PL1H1C5, solving a
total of 27 moment matching problems. After discretizing
all 39 conditional distributions, we apply Equation (B3) as
follows:

P4PL= l1H =b1C=h1O=b5=pPLl ·pHb �l ·p
C
h�l1b ·p

O
b �l1b1h0 (B3)

This alternative discretization fixes the values of the vari-
ables and models the probabilistic dependence using the
probabilities of the joint events, which enables comparison
our approach with CR. As shown in Figure 4, the two dis-
cretizations are very close.

Appendix C. Rank Correlation Range in
Discrete Distributions
Typically, the rank correlation �X1Y between two random
variables X1Y is perceived to be −1 ≤ �X1Y ≤ 1, where the
correlation between a variable and itself is defined with
the maximum degree of association �X1X = 1. However, the
same concept only applies to discrete distributions when
the number of discrete points tends to infinity. For most dis-
crete distributions, �X1Y is bounded by a scalar �am̂�< 1. For
example, when X and Y have each m̂ equally likely realiza-
tions, MacKenzie (1994) proved that am̂ = 1−1/m̂2. Then, the
rank correlation is bounded by −1+1/m̂2 ≤ �X1Y ≤ 1−1/m̂2,
and as the number of realizations increases, limm̂→� �am̂� = 1.
Nešlehová (2007) also found similar behavior for more gen-
eral bounds where X and Y have arbitrary marginals.

As an illustration of this fact, recall that the maximum
association dictates that P4Y = yi � X = xi5 = 1 for every i.
For example, in §4.2 we calculate the maximum �PL1H by
assigning joint probabilities such that P4PL = l � H = l5 =

P4PL = b � H = b5 = P4PL = h � H = h5 = 1, which results in
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pl1 l1 ·1 · = 00185, pb1 b1 ·1 · = 0063, ph1h1 ·1 · = 00185, with all other
probabilities equal to zero. Then, using Equation (4a) and
as shown in §4.2, we can calculate that the maximum cor-
relation possible is sup�PL1H = 0074. Given that the rank
correlation uses P4X5 instead of X, and that P4PL5 = P4H5
in distribution, we have that �PL1PL = sup�PL1H = 0074, as
shown in Table 3.

Appendix D. Absolute Bounds for Risk Profiles
Given the system of linear equations Ap = b1 ∀p ≥ 0, where
A is the matrix of coefficients of Equations (2a), (2b), (3), and
(4a), and b represents the expert assessments, the decision
variable p has 81 elements, one for each joint outcome of
the cdf, and each joint outcome has a corresponding profit
v = 4v11v21 0 0 0 1 v815. Then, for an arbitrary profit u, the LB
and UB of the cdf at u are calculated using the indicator
function 1≤u4vi5= 1 if vi ≤ u and 0 otherwise.

The objective function cup, where cu = 41≤u4v151
1≤u4v251 0 0 0 11≤u4v8155 is used to find the cdf with the
min 4max5 cumulative probability of the random profit
X been less than a value u, in other words, min 4max5
P4X ≤ u5. Then, for any u, the lower (upper) bound can be
calculated with Equation (D1):

min 4max5 cup

s.t. Ap = b ∀p ≥ 00 (D1)

To produce a complete risk profile LB (UB), we need to
solve Equation (D1) for u = v1 to u = v81. The value of the
objective function for each of the 81 LPs produces the min
(max) absolute bound. By selecting cu = v, the same LP
provide the theoretical lower (upper) bounds for the mean
profits.

Appendix E. The Sea Urchin Effect:
Volume in High-Dimension Polytopes
The description of the n-content (the volume in n dimen-
sions) of a body in high dimensions is often unintuitive.

Figure E.1 Partition of a Polytope and Respective Volume Proportions for Three Scenarios
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Note. Where scenarios for one, two, and four random variables are shaded light gray, dark gray, and black, respectively.

Although the volume is uniformly distributed in the poly-
tope, it may appear to be more concentrated in specific
areas of its interior. We call this the sea urchin effect (after
Johannes Kepler’s naming the dodecahedron the echinus,
which is Latin for sea urchin). Jimenez and Landgrebe
(1998) described this behavior for several geometric bodies.
However, we are interested only in the description of the
unit simplex.

To observe the dispersion of the volume over �, we create
a partition of an unconstrained polytope (a unit simplex),
slicing it horizontally from a corner to its base along the
height (Figure E.1(a)).

We generate 1,000 sections 4S = 110005 and enumerate
them starting with the section closest to the vertex. For each
section, we measure the volume Vol(�i) and take the pro-
portions Pri = Vol4�i5/Vol4�5 for i = 11 0 0 0 111000. If we take
N samples, the number of samples in section i should be
N ∗ Pri. Equation (E1) describes the volume of the ith sec-
tion (Figure E.1(b)). This section is generated by a single cut
of � perpendicular to its height (H ) at a distance 4i/S5H ,
where S is the number of parts in the partition:

i
∑

k=1

Vol4�k5=

(

i

S

)n

·

√
n+ 1
n!

1 ∀ i = 11 0 0 0 1 S0 (E1)

We illustrate the dispersion of volume in � by plotting
the proportion of volume in each section for three scenarios
using one, two, and four random variables with three pos-
sible outcomes each (Figure E.1(c)). The dimensions of the
polytopes are n = 2181 and 80 and are shaded light gray,
dark gray, and black, respectively. The concentration of the
volume closer to the vertices decays rapidly with n.

Adding more dimensions increases the set of joint dis-
tributions that match a set of information. However, the
sample taken by JDSIM is more concentrated. This appar-
ent paradox is resolved by observing that even though �
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is larger, the total n-content
√
n+ 1/n! decreases to zero as

n goes to infinity. This decay occurs more quickly in the
corners of the polytope.
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