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ABSTRACT

The Weather Channel (TWC) is a leading provider of weather information to the general public. In this
paper the reliability of their probability of precipitation (PoP) forecasts over a 14-month period at 42
locations across the United States is verified. It is found that PoPs between 0.4 and 0.9 are well calibrated
for near-term forecasts. However, overall TWC PoPs are biased toward precipitation, significantly so during
the warm season (April–September). PoPs lower than 0.3 and above 0.9 are not well calibrated, a fact that
can be explained by TWC’s forecasting procedure. In addition, PoPs beyond a 6-day lead time are mis-
calibrated and artificially avoid 0.5. These findings should help the general public to better understand
TWC’s PoP forecasts and provide important feedback to the TWC so that they may improve future
performance.

1. Introduction

The Weather Channel (TWC) is a leading provider
of weather information to the general public via its
cable television network and interactive Web site (see
http://www.weather.com/). TWC’s cable network is
available in 95% of cable TV homes in the United
States and reaches more than 87 million households.
Their Internet site, providing weather forecasts for
98 000 locations worldwide, averages over 20 million
unique users per month and is among the top 15 news and
information Web sites, according to Nielsen/NetRatings
(more information is available online at http://press.
weather.com/company.asp).

The public uses TWC’s forecasts to make decisions as
mundane as whether to carry an umbrella or as signif-
icant as whether to seek shelter from an approaching
storm. How accurate are these forecasts? Are they free
from bias? Should the public accept TWC forecasts at
face value or do they need to be adjusted to arrive at a
better forecast?

In this paper, we analyze the reliability of probability

of precipitation (PoP) forecasts provided by TWC (via
weather.com) over a 14-month period (2 November
2004–16 January 2006), at 42 locations across the
United States. Specifically we compare n-day-ahead
PoP forecasts, where n ranges from 0 (same day) to 9,
with actual precipitation observations.

This paper is organized as follows. In the next sec-
tion, we describe our verification approach and review
the associated literature. In section 3 we summarize our
data collection procedure. In section 4 we present the
reliability results and discuss the implications. In sec-
tion 5 we present our conclusions.

2. Verification of probability forecasts

The literature dealing with forecast verification and
value is extensive (e.g., for an overview see Katz and
Murphy 1997; Jolliffe and Stephenson 2003). In this
paper, we adopt the distribution-oriented framework
proposed by Murphy and Winkler (1987, 1992).

a. Distributional measures

Let F be the finite set of possible PoP forecasts
fi ∈ [0, 1], i � 1 to m. Here X is the set of precipitation
observations, which we assume may obtain only the
value x � 1 in the event of precipitation and x � 0
otherwise. The empirical relative frequency distribu-
tion of forecasts and observations given a particular
lead time l is p( f, x| l) and completely describes the
performance of the forecasting system. A perfect
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forecasting system would ensure that p( f, x| l) � 0 when
f � x. In the case of TWC, l may obtain integer values
ranging from 0 (same day) to 9 (the last day in a 10-day
forecast).

Since

p� f, x|l � � p� f | l �p�x| f, l � � p�x|l �p� f |x, l �, �1�

two different factorizations of p( f, x|l) are possible and
each facilitates the analysis of forecasting performance.

The first factorization, p( f, x| l) � p( f | l)p(x| f, l) is
known as the calibration-refinement (CR) factoriza-
tion. Its first term, p( f | l), is the marginal or predictive
distribution of forecasts and its second term, p(x| f, l), is
the conditional distribution of the observation given the
forecast. For example, p(1| f, l) is the relative frequency
of precipitation when the forecast was f and the lead
time was l. The forecasts and observations are indepen-
dent if and only if p(x|f, l) � p(x|l). A set of forecasts
is well calibrated (or reliable) if p(1| f, l) � f for all f. A
set of forecasts is perfectly refined (or sharp) if p( f ) �
0 when f is not equal to 0 or 1 (i.e., the forecasts are
categorical). Forecasting the climatological average or
base rate will be well calibrated, but not sharp. Like-
wise, perfectly sharp forecasts generally will not be well
calibrated.

The second factorization, p( f, x| l) � p(x| l)p( f | x, l),
is the likelihood-base rate (LBR) factorization. Its first
term, p(x| l), is the climatological precipitation fre-
quency. Its second term, p( f | x, l), is the likelihood
function (also referred to as discrimination). For ex-
ample, p( f | 1, l) is the relative frequency of forecasts
when precipitation occurred, and p( f | 0, l) is the fore-
cast frequency when precipitation did not occur. The
likelihood functions should be quite different in a good
forecasting system. If the forecasts and observations are
independent, then p( f | x, l) � p( f | l).

b. Summary measures

In addition to the distributional comparison dis-
cussed above, we will use several summary measures of
forecast performance. The mean forecast given a par-
ticular lead time is

fl � �
F

�
X

fp� f, x|l � � EF,X |l � f � , �2�

where E[ ] is the expectation operator. Likewise, the
climatological frequency of precipitation, indexed by
lead time, is

xl � EF,X |l �x�. �3�

The mean error (ME) is

ME� f, x|l � � fl � xl , �4�

and is a measure of unconditional forecast bias. The
mean-square error (MSE) or the Brier score (Brier
1950) is

MSE� f, x|l � � EF,X |l �� f � x�2�. �5�

The climatological skill score (SS) is

SS� f, x|l � � 1 � MSE� f, x|l ��MSE�xl, x|l �. �6�

Note that

MSE�xl, x|l � � EF,X |l ��x � x�2� � �x
2 ,

where 	2
x is the variance of the observations. Therefore,

SS� f, x|l � �
�x

2 � MSE� f, x|l �

�x
2 , �7�

and we see that SS measures the proportional amount
by which the forecast reduces our uncertainty regarding
precipitation, as measured by variance.

In addition to these scoring measures, we will also
investigate the correlation between the forecasts and
the observations, which is given by

�� f, x|l � �
cov� f, x|l �

��x
2�f

2�1�2 , �8�

where cov is the covariance and 	2
f is the variance of the

forecasts.

3. Data gathering procedure

a. PoP forecasts

We collected TWC forecasts from 2 November 2004
to 16 January 2006. [These data were collected from
http://www.weather.com/, which provides a 10-day fore-
cast that includes forecasts from the same day (0-day
forecast) to 9 days ahead.] Figure 1 displays a repre-
sentative 10-day forecast from 2007. These forecasts are
available for any zip code or city and include probabil-
ity of precipitation, high/low temperature, and verbal
descriptions or weather outcomes such as “partly
cloudy.” The forecasts are updated on a regular basis
and are freely available to the public.

TWC’s PoP forecasts cover a 12-h window during the
daytime (0700–1900 local time), rather than a complete
24-h day. The 12-h PoP is the maximum hourly PoP
estimated by TWC during the forecast window. PoPs
are rounded and must adhere to local rules relating
PoPs to weather outcomes (B. Rose 2007, personal
communication).1

1 Bruce Rose is a meteorologist and software designer for TWC
based in Atlanta, Georgia. The authors worked closely with Dr.
Rose to understand TWC’s forecasting process.
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We selected 50 locations in the United States, one in
each state. Within each state we selected a major city.
Within each city we selected the lowest zip code, ex-
cluding P.O. boxes. See Table 1 for a list of the cities
and zip codes included in this study.

Since TWC’s forecasts are not archived, we recorded
the forecasts daily. We automated this collection using
a Web query and a macro in Microsoft Excel. The
macro gathered forecast data directly from Web pages,
such as that shown in Fig. 1. This process worked well,
but was not completely automatic. In some cases, we
experienced temporary problems with certain zip codes
(e.g., http://www.weather.com/ data being unavailable)
or faced Internet outages. These errors were generally
discovered at a point at which forecast data could still
be acquired. However, on some days (though fewer

than 5%), we were unable to retrieve the PoP forecasts,
and these data have been excluded from the analysis.
While we did record high and low temperature in ad-
dition to PoP, we do not analyze temperature forecasts
in this paper.

Because the archival process required intervention,
we decided upon a single collection time. This timing is
important because the forecasts are updated frequently
and not archived. To ensure that we did not collect
same-day forecasts before they were posted in our
westernmost zip codes (Hawaii and Alaska) we estab-
lished a collection time of 1130 central standard time
(CST), which corresponds to 0730 Hawaii–Aleutian
standard time, 0830 Alaska standard time, 0930 Pacific
standard time, 1030 mountain standard time, and 1230
eastern standard time (EST). During daylight saving
time (DST), we archived forecasts at 1130 central day-
light time (CDT; 1030 CST). TWC builds their forecasts
at 0100, 0300, 0900, 1100, 1810, and 2300 EST [or east-
ern daylight time (EDT); B. Rose 2007, personal com-
munication]. These forecasts reach TWC’s Web site
approximately 15 min later. Therefore, our forecasts
represent TWC’s view at 1000 CST (or CDT). On rare
occasions, TWC amends forecasts during the day, but
we do not try to account for this.

b. Precipitation observations

The observed records of daily precipitation and high/
low temperature of the current and previous month are
available online at the TWC Web site. However, the
Web site only archives daily precipitation observations,
whereas we require hourly observations because the
PoP forecast is for the 12-h window during the daytime.
Therefore, we obtained hourly precipitation observa-
tion data from the National Climatic Data Center
(NCDC; available online at www.ncdc.noaa.gov). Us-
ing NCDC’s database, we selected the observation sta-
tion that was closest to our forecast zip code.2 Table 1
lists the observation stations used in this study and both
the distance and elevation difference between the fore-
cast zip code and the observation station. Most stations
were within 20 km of the forecast zip code. However,
eight stations were more than 20 km from the forecast
area (i.e., Alaska, California, Colorado, Idaho, New
Mexico, Oklahoma, Pennsylvania, and Vermont). In
addition, one forecast–observation pair was separated
by more than 500 m in elevation (i.e., Alaska). We have
therefore removed these eight locations from our

2 We considered an NCDC observation of less than 0.01 in. of
precipitation as an observation of no precipitation.

FIG. 1. Example of 10-day forecast available at the TWC Web
site.
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TABLE 1. Forecast zip codes and observation stations.

State City
Forecast
zip code Observation station (call sign)

Distance between
forecast and

observation (km)

Elev diff between
forecast and

observation (m)

Alabama Montgomery 36104 Montgomery Regional Airport (MGM) 13 16
Alaska Valdez 99686 M. K. Smith Airport (CDV) 72 1571
Arizona Phoenix 85003 Phoenix Sky Harbor International

Airport (PHX)
5 7

Arkansas Little Rock 72201 Adams Field Airport (LIT) 5 15
California Stanford 94305 Hayward Executive Airport (HWD) 24 15
Colorado Denver 80002 Denver International Airport (DEN) 29 11
Connecticut Hartford 06101 Hartford–Brainard Airport (HFD) 5 7
Delaware Newark 19702 New Castle County Airport (ILG) 11 2
Florida Tallahassee 32306 Tallahassee Regional Airport (TLH) 5 2
Georgia Atlanta 30303 Hartsfield–Jackson Atlanta Intl AP (ATL) 11 12
Hawaii Honolulu 96813 Honolulu International Airport (HNL) 8 17
Idaho Idaho Falls 83401 Idaho Falls Regional ARPT (IDA) 32 246
Illinois Chicago 60601 Chicago Midway International

ARPT (MDW)
11 5

Indiana Indianapolis 46201 Indianapolis International Airport (IND) 16 7
Iowa Des Moines 50307 Des Moines International Airport (DSM) 6 21
Kansas Wichita 67202 Colonel James Jabara Airport (AAO) 8 34
Kentucky Frankfort 40601 Capital City Airport (FFT) 8 10
Louisiana New Orleans 70112 Louis Armstrong New Orleans Intl

AP (MSY)
16 1

Maine Augusta 04330 Augusta State Airport (AUG) 5 66
Maryland Baltimore 21201 Baltimore–Washington International

Airport (BWI)
13 19

Massachusetts Cambridge 02139 Logan International Airport (BOS) 8 1
Michigan Detroit 48201 Detroit City Airport (DET) 6 4
Minnesota Minneapolis 55401 Minneapolis–St. Paul International

AP (MSP)
11 13

Mississippi Jackson 39201 Jackson International Airport (JAN) 10 17
Missouri Springfield 65802 Springfield–Branson Regional

Airport (SGF)
5 6

Montana Helena 59601 Helena Regional Airport (HLN) 14 14
Nebraska Lincoln 68502 Lincoln Municipal Airport (LNK) 8 6
Nevada Reno 89501 Reno–Tahoe International Airport (RNO) 3 24
New Hampshire Manchester 03101 Manchester Airport (MHT) 6 14
New Jersey Trenton 08608 Trenton Mercer Airport (KTTN) 6 45
New Mexico Santa Fe 87501 Santa Fe Municipal Airport (SAF) 32 215
New York New York 10001 Central Park (NYC) 5 30
North Carolina Raleigh 27601 Raleigh–Durham International AP (RDU) 16 39
North Dakota Fargo 58102 Hector International Airport (FAR) 2 0
Ohio Columbus 43085 Port Columbus International Airport (CMH) 16 29
Oklahoma Oklahoma City 73102 Wiley Post Airport (PWA) 21 23
Oregon Portland 97201 Portland International Airport (PDX) 10 182
Pennsylvania Pittsburgh 15201 Pittsburgh International Airport (PIT) 24 73
Rhode Island Providence 02903 T. F. Green State Airport (PVD) 10 9
South Carolina Charleston 29401 Charleston AFB/International

Airport (CHS)
14 9

South Dakota Sioux Falls 57103 Joe Foss Field Airport (FSD) 3 30
Tennessee Memphis 38103 Memphis International Airport (MEM) 11 5
Texas College Station 77843 Easterwood Airport (KCLL) 2 8
Utah Salt Lake City 84101 Salt Lake City International Airport (SLC) 6 2
Vermont Newport 05855 Morrisville–Stone St. ARPT (MVL) 48 3
Virginia Richmond 23219 Richmond International Airport (RIC) 10 3
Washington Seattle 98101 Seattle–Tacoma International Airport (SEA) 14 68
West Virginia Charleston 25301 Yeager Airport (CRW) 3 95
Wisconsin Madison 53703 Dane County Regional–Truax Field

Airport (MSN)
6 4

Wyoming Cheyenne 82001 Cheyenne Airport (CYS) 3 11
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analysis, leaving 42 locations.3 The average distance
and elevation between observation stations and our zip
codes for these 42 locations are approximately 7 km
and 18 m, respectively. The maximum distance and el-
evation difference between forecast–observation pairs
are 16 km and 181 m, respectively. We also verified that
the surface conditions between the observation–
forecast pairs for the 42 remaining stations are similar.

The hourly data for each observation station is ar-
chived according to local standard time (LST). We used
a 12-h observation window from 0700 to 1900 LST for
each location to calibrate the PoP forecast data, which
corresponds to the TWC’s PoP definition. Because the
observations are always archived according to LST,
during DST we slide our observation window up 1 h
(0600–1800 LST) except in Arizona and Hawaii.

The verification of the same day PoP forecasts is
more complicated than other PoP forecasts because the
timing of the forecast collection determines which
hours of observation data should be included. For ex-
ample, in the eastern time zone, we only want to in-
clude precipitation observations between 1100 and 1900
EST (or between 1000 and 1800 EST during DST).
Therefore, we removed hourly precipitation observa-
tions that occurred before the forecast time for the
same-day forecasts at each location.

c. Data summary

Before beginning our analysis, we summarize our
forecast and observation data in Table 2. We collected
between 15 742 and 17 338 PoP forecasts, depending on
the lead time (169 163 PoPs in total). Precipitation was

observed approximately 21% of the time. The fre-
quency of precipitation for same-day forecasts is lower
(18%) because these forecasts span less than a 12-h
window for some time zones. TWC’s average PoP fore-
cast varied over the lead times, ranging from a low of
0.198 (7 day) to a high of 0.265 (8 day). All but one lead
time exhibits a positive mean error between the fore-
cast and the observation, suggesting some degree of
positive bias in TWC’s PoP forecasts. The same-day
bias is 0.052.

Table 3 details the number of forecasts by PoP and
lead time. TWC forecast a 0.2 PoP 4930 times for their
same-day forecast. Overall, a 0.0 PoP was forecast
24 382 times, while a PoP of 1.0 was forecast 410 times.
The italic values identify forecasts that were made
fewer than 40 times, which we exclude from further
analysis.4

4. Forecast verification

a. Calibration-refinement factorization

Figure 2 displays a calibration or attributes diagram
(Hsu and Murphy 1986) for TWC’s 0-day PoP fore-
casts. The line at 45°, labeled “perfect,” identifies PoPs
that are perfectly calibrated [i.e., p(1|f, l) � f ]. The
horizontal line labeled “no resolution” identifies the
case where the frequency of precipitation is indepen-
dent of the forecast. The line halfway between no reso-
lution and perfect is labeled “no skill.” Along this line
the skill score is equal to zero and according to Eq. (7),
the forecast does not reduce uncertainty in the obser-
vation. Points above (below) this line exhibited positive
(negative) skill.

3 In hindsight, we should have selected forecasts that corre-
spond to observation stations. However, we initially thought we
would be able to use TWC’s observation data, only later realizing
that these observations do not cover the same length of time as
the forecasts.

4 A cutoff of 40 is common in hypothesis testing. The variance
of a binomial distribution is Np(1 � p). The normal approxima-
tion to the binomial is very good when this variance is greater than
10. Thus, if p � 1⁄2 then N should be greater than 40.

TABLE 2. Summary of forecast and observation data.

Lead time
(days)

No. of
forecasts

Precipitation
observations (x � 1)

Avg PoP
forecast

Frequency of
precipitation ME

0 17 338 3121 0.232 0.180 0.052
1 17 231 3651 0.245 0.212 0.034
2 17 161 3636 0.243 0.212 0.031
3 17 075 3610 0.242 0.211 0.031
4 16 975 3605 0.237 0.212 0.025
5 16 914 3550 0.231 0.210 0.021
6 16 909 3588 0.231 0.212 0.019
7 16 849 3580 0.198 0.212 �0.015
8 16 815 3577 0.265 0.213 0.052
9 15 742 3283 0.230 0.209 0.021
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The gray area in Fig. 2 presents the frequency with
which different PoPs are forecast [i.e., p( f )]. We notice
peaks at PoPs of 0.0 and 0.2, each being forecast more
than 20% of the time.

We identified a probability interval around the line
of perfect calibration, based on the number of forecasts,
which determines whether we identify a PoP as being
not well calibrated. Based on the normal approxima-
tion to the binomial distribution, we establish a 99%
credible interval, in which case there is a 1% chance a
forecast–observation pair would be outside this interval
(0.5% chance of being above and 0.5% chance of being
below). For example, if the PoP was truly f, then there
is a 99% chance that the actual relative frequency of
precipitation would be within

f 
 ��1�0.995�� f �1 � f �

N �1�2

, �9�

where ��1 is the inverse of the standard normal cumu-
lative [��1(0.995) � 2.576] and N is the number of
forecasts. This range forms an envelope around the line
of perfect calibration, the width of which is determined
by Eq. (9). If a forecast–observation pair lies outside
this range, then the forecast is not well calibrated.5

PoPs of 0.0, 0.1, 0.2, 0.3, and 1.0 are not well calibrated.
PoPs of 0.0 and 1.0 will not be well calibrated if even a
single contrary event occurs, which is a good reason to
restrict PoP forecasts to the open interval (0, 1).

The 0.3 PoP is not well calibrated and exhibits no
skill. PoPs below 0.3 are quite poor: they are miscali-
brated, exhibit negative skill, and are biased. For ex-
ample, when TWC forecast a 0.2 chance of precipita-

5 This is identical to a two-tailed t test with a 1% level of sig-
nificance.

FIG. 2. Calibration diagram for TWC’s same-day PoP forecasts.

TABLE 3. Number of probability of precipitation forecasts by lead time.

Lead
time

PoP

Subtotal0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 4316 2469 4930 2065 799 909 602 234 606 175 233 17 338
1 4169 2312 4537 2215 907 833 877 272 794 193 122 17 231
2 2285 2989 5435 3366 900 457 936 389 246 113 45 17 161
3 1084 2103 7212 4076 1486 231 720 93 70 30 10 17 115
4 1047 2164 7215 4116 1570 244 545 74 29 9 0 17 013
5 1053 2395 7106 4152 1541 232 435 33 17 5 0 16 969
6 1142 2465 6768 4220 1618 228 468 13 1 2 0 16 925
7 2737 3390 5344 3485 1266 63 564 3 0 2 0 16 854
8 3395 3271 2907 1810 1255 95 4082 0 0 0 0 16 815
9 3154 3456 3155 2218 1348 105 2306 0 0 0 0 15 742

Subtotal 24 382 27 014 54 609 31 723 12 690 3397 11 535 1111 1763 529 410 169 163
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tion for the same day, precipitation occurred only 5.5%
of the time.

PoPs of 0.4 and above, excluding 1.0, can be taken
at face value and used directly in decision making.
However, PoPs of 0.3 and below or 1.0 require adjust-
ment—sometimes significant.

Figure 3 presents the calibration diagrams for lead
times of 1–9 days. The 1-day forecasts exhibit the same
behavior as the 0-day forecasts: PoPs from 0.0 to 0.2
and 1.0 are miscalibrated. The calibration of midrange
PoPs begins to degrade with lead time. Performance
decreases markedly beginning with the 7-day forecasts.
For example, most of the PoP forecasts lay along the no
skill line for lead times of 7 days or longer. While pre-
dictability does decrease with lead time, calibration
performance should not; a forecast of f should occur
f � 100% of the time whether it was a forecast for the
next hour or the next year.

These phenomena can be explained in part by TWC’s
forecasting procedure (B. Rose 2007, personal commu-
nication). The meteorologists at TWC receive guidance
from a mixture of numerical, statistical, and climato-
logical inputs provided by computer systems. The hu-
man forecasters rarely intervene in forecasts beyond
6 days. Thus, the verification results of the 7–9-day

forecasts represent the “objective” machine guidance
being provided to TWC’s human forecasters. In this
respect, the human forecasters appear to add consider-
able skill, since the 0–6-day calibration performance is
so much better.

However, when humans do intervene, they introduce
considerable bias into the low-end PoP forecasts. This
bias could be a by-product of the intervention tools
used by the human forecasters. The forecasters do not
directly adjust the PoPs, but instead change what is
known as the sensible weather forecast. For example,
they might change partly cloudy to “isolated thunder.”
When this change is made, a computer algorithm de-
termines the “smallest” change that must be made in a
vector of weather parameters to make them consistent
with the sensible weather forecast. A PoP of 29% is the
cutoff for a dry forecast and therefore, it appears as
though this intervention tool treats all “dry” PoPs as
being nearly equivalent. This also might explain the
curious dip in forecast frequency at 0.1 in both the
0- and 1-day forecasts.

The frequency of forecasts highlights additional chal-
lenges with the machine guidance. The most likely 8-
and 9-day forecasts are 0.0 and 0.6, with a forecast of
0.5 being very unlikely. TWC appears to avoid forecasts

FIG. 3. Calibration diagrams for 1–9-day lead times.
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of 0.5. We can even see the “ghost” of the 0.6 peak in
the shorter-term human-adjusted forecasts. Forecasts
as extreme as 0.0 or 0.6 are difficult to justify far into
the future. For example, the frequency of precipitation
conditional on the forecast ranges from 0.12 to 0.32 for
the 9-day forecast. It appears that TWC’s forecasts
would need to be constrained to this range if they were
intended to be well calibrated.

Table 4 presents several summary measures of fore-
casting performance. The mean-square error [Eq. (5)]
ranges from 0.095 to 0.188. The variance of the fore-
casts is less than the variance of the observations, but
much less stable. The correlation between the forecasts
and the observations begins at 0.615 and declines
quickly with lead time. The same-day skill score is
approximately 36% and declines with lead time. The
8- and 9-day computer forecasts exhibit negative
skill—using the computer forecasts directly induces
more error than using climatology. For comparison,
Murphy and Winkler (1977) found an overall SS for a
sample of National Weather Service forecasts, aver-
aged over all lead times, of approximately 31%.

b. Likelihood-base-rate factorization

Figure 4 displays the likelihood functions (or dis-
crimination plots), p( f | 1, l) and p( f | 0, l) for TWC’s
0-day PoP forecasts. Given that precipitation did not
occur, it is likely TWC forecast a PoP of either 0.0 or
0.2. Likewise, it is unlikely that PoPs greater than 0.6
were forecast in this situation. However, if precipitation
did occur, a range of PoPs from 0.3 to 0.8 were almost
equally likely to have been forecast. Ideally, one would
hope to see p( f |1, l) peak at high PoPs and decline to
the left.

Figure 5 displays likelihoods for the remainder of
lead times. The degree of overlap between the likeli-
hood functions increases rapidly with lead time, as the
forecasts lose their ability to discriminate and skill

scores fall. The peaks at a PoP of 0.6 are even more
pronounced in the likelihood graphs.

c. Warm and cool seasons

Following Murphy and Winkler (1992), we gain ad-
ditional insight into TWC’s forecasts by analyzing their
performance during warm (April–September) and cool
(October–March) months. Table 5 summarizes the
forecast and observation data by season. Approxi-
mately 60% of our dataset covers the cool season be-
cause we gathered data from 2 November 2004 to 16
January 2006. The sum of the number of forecasts for
the cool and warm seasons is lower than the totals
presented in Table 2 because we have excluded PoPs
that were forecast fewer than 40 times. For example,
a same-day PoP of 0.9 was forecast only 26 times dur-
ing the warm-season and has therefore been excluded
from the warm-season analysis (17 388 � 10 374 �
6938 � 26).

The frequency of precipitation was lower during the
warm season than during the cool season. Yet, TWC
forecast higher PoPs during the warm season, resulting
in a larger mean error. For example, the 0-day warm
season PoP was 0.086 too high on average.

Figure 6 compares the 0-day PoP calibration in the
cool and warm seasons. The most likely forecast in the
cool season was 0.0, even though precipitation occurred
more frequently than during the warm season. The cool
season is not well calibrated for low (0.0–0.2) or high
(0.8–1.0) PoPs, whereas the lower half of the PoP range
performs poorly during the warm season—TWC over-
forecasts PoPs below 0.5 during the warm season. Over-
all, the warm season is not as well calibrated as the cool.

Figure 7 contrasts the cool and warm calibration for
1–9-day forecasts. The calibration performance be-
tween the two seasons is similar. However, the cool-
season PoPs tend to be sharper because they forecast

FIG. 4. Likelihood functions for TWC same-day forecasts.

TABLE 4. Summary measures of forecasting performance at
different lead times.

Lead
time MSE

Variance

Correlation
Skill
scoreForecasts Observations

0 0.095 0.053 0.148 0.615 35.9%
1 0.113 0.055 0.167 0.575 32.4%
2 0.127 0.036 0.167 0.499 24.2%
3 0.140 0.019 0.167 0.416 16.1%
4 0.147 0.016 0.167 0.352 11.8%
5 0.152 0.014 0.166 0.289 8.1%
6 0.158 0.015 0.167 0.243 5.4%
7 0.167 0.019 0.167 0.177 0.4%
8 0.188 0.049 0.167 0.176 �12.0%
9 0.179 0.038 0.165 0.158 �8.2%
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FIG. 5. Likelihood diagrams for 1–9-day lead times.

TABLE 5. Summary of forecast and observation data for cool and warm seasons.

Cool season

Lead time
(days)

No. of
forecasts

Precipitation
observations (x � 1)

Avg PoP
forecast

Frequency of
precipitation ME

0 10 374 1877 0.210 0.181 0.029
1 10 374 2232 0.229 0.215 0.014
2 10 296 2204 0.231 0.214 0.017
3 10 256 2212 0.237 0.216 0.022
4 10 216 2196 0.232 0.215 0.017
5 10 170 2164 0.224 0.213 0.011
6 10 149 2201 0.225 0.217 0.008
7 10 117 2199 0.190 0.217 �0.027
8 10 080 2188 0.243 0.217 0.026
9 8998 1904 0.239 0.212 0.027

Warm season

Lead time
(days)

No. of
forecasts

Precipitation
observations (x � 1)

Avg PoP
forecast

Frequency of
precipitation ME

0 6938 1222 0.262 0.176 0.086
1 6765 1341 0.262 0.198 0.064
2 6799 1380 0.252 0.203 0.049
3 6789 1381 0.248 0.203 0.044
4 6745 1404 0.244 0.208 0.036
5 6744 1386 0.240 0.206 0.035
6 6760 1387 0.240 0.205 0.035
7 6722 1377 0.209 0.205 0.004
8 6695 1373 0.296 0.205 0.091
9 6709 1371 0.216 0.204 0.012
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0.0 more frequently. One noticeable difference in fore-
cast behavior is the increased frequency of 0.3 PoPs
during the warm season.

Table 6 compares the skill scores and correlations
between the two seasons. Warm-season forecasts are
about half as skillful as the cool season. Cool-season
skill scores begin at about 44% and decline to 0% by
day 7. Warm-season skill scores are about 50% lower.
For comparison, Murphy and Winkler (1992) found
skill scores of 57%, 38%, and 30% for the 0-, 1-, and
2-day forecasts during the cool season and 37%, 24%,
and 21% during the warm season, respectively. TWC’s
performance is on par with these earlier studies in the
cool season, if somewhat worse for same-day forecasts.

Warm-season performance appears to lag previous
studies.

We can better understand the drivers of the differ-
ence between warm and cool seasons by decomposing
the MSE given in Eq. (5) as follows (Murphy and Wink-
ler 1992):

MSE� f, x|l � � �x
2  EF |l � f � p�x| f, l ��2

� EF |l �xl � p� x | f, l ��2. �10�

The second term on the rhs of (10) is a measure of
calibration or refinement. The last term is the resolu-
tion (Murphy and Daan 1985). Figure 8 plots the MSE
for the cool and warm seasons according to this factor-

FIG. 6. Same-day PoP calibration in warm and cool seasons.
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FIG. 7. Comparison of PoP calibration in (top three rows) cool and (bottom three rows) warm seasons for 1–9-day lead times.
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ization. Note that we have displayed the negative of the
resolution (the lowest area) so that higher resolution
lowers the MSE, as in Eq. (10). We see that cool-season
forecasts have better resolution (more negative) than
the warm season. In addition the cool season exhibits
better calibration for near-term (2 days or less) and
long-term (7 days or more) PoP forecasts. The variance
of the observations is slightly lower in the warm season.

The best measure of a probability distribution’s
sharpness is its entropy H (Cover and Thomas 1991),
which is given by

H�p� � ��
i

pi log�pi�. �11�

The logarithm can be to any base, but we will use base
2. Entropy is at a minimum in the case of certainty and
at a maximum when the probabilities are uniform. In
the case of binary forecasts, the maximum entropy is
log2(2) � 1. Entropy can also be thought of as a mea-
sure of the amount of information contained in a prob-
ability assessment, with lower entropies conveying
greater information content.

Suppose a forecaster provides a PoP of f. The entropy
of this forecast is �[f log2(f )  (1 � f ) log2(1 � f )].

We can therefore associate an entropy to each of
TWC’s forecasts. Figure 9 plots the average entropy of
TWC forecasts for the cool and warm seasons as a func-
tion of lead time. In addition, the entropy of a clima-
tological forecast, based on Table 5, is also displayed. In
the case of the cool season, we see that TWC forecasts
have less entropy (more information) than climatology.
The 0- and 1-day forecasts are much narrower than
forecasts based solely on climatology because a PoP of
0.0 is forecast often. Entropy increases with lead time as
one would expect, but suddenly drops for lead times of
7–9 days. Because these forecasts are not calibrated, we
see this drop in entropy as not a result of superior in-
formation. Rather, the long-term forecasts are too
sharp. The warm season entropies are closer to clima-
tology, but also drop significantly after 6 days.

The 0-day likelihood functions for the cool and warm
seasons are compared in Fig. 10. Given that precipita-
tion was not observed, the most likely forecast during
the cool season was 0.0, whereas it was 0.2 during the
warm season. If precipitation was observed, it was
much more likely that a lower PoP was forecast dur-
ing the warm season than during the cool season. We
also notice peaks at 0.8 in the event of precipitation.
Figure 11 compares the likelihoods for the remaining

TABLE 6. Comparison of cool- and warm-season summary
measures.

Cool season

Lead
time MSE

Variance

Correlation
Skill
scoreForecasts Observations

0 0.083 0.064 0.148 0.670 44.3%
1 0.103 0.067 0.169 0.627 39.2%
2 0.119 0.042 0.168 0.543 29.1%
3 0.137 0.021 0.169 0.450 19.0%
4 0.146 0.018 0.169 0.376 13.7%
5 0.153 0.016 0.168 0.300 8.9%
6 0.159 0.016 0.170 0.254 6.1%
7 0.169 0.019 0.170 0.184 0.7%
8 0.179 0.042 0.170 0.199 �5.3%
9 0.183 0.040 0.167 0.150 �9.8%

Warm season

Lead
time MSE

Variance

Correlation
Skill
scoreForecasts Observations

0 0.112 0.034 0.145 0.527 22.5%
1 0.128 0.032 0.159 0.468 19.4%
2 0.137 0.022 0.162 0.413 15.4%
3 0.144 0.013 0.162 0.360 11.2%
4 0.150 0.013 0.165 0.317 9.1%
5 0.152 0.012 0.163 0.276 6.9%
6 0.156 0.013 0.163 0.229 4.1%
7 0.163 0.019 0.163 0.171 �0.2%
8 0.200 0.058 0.163 0.152 �22.7%
9 0.172 0.035 0.163 0.170 �5.9%

FIG. 8. MSE decomposition for cool and warm seasons.
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lead times. The overlap between the likelihood func-
tions is greater during the warm season. We also ob-
serve peaks at particular probabilities. For example, if
precipitation occurred during the warm season, it is al-
most certain that TWC did not forecast a PoP of 0.7
1-day ahead. Likewise, the 0.6 peaks are prominent in
both seasons. Again, one would hope to see the likeli-
hood function given precipitation peak at high PoPs
and monotonically decline to the left. TWC’s forecasts
are good at identifying a lack of precipitation, but are
not particularly strong at identifying precipitation—
especially during the warm season.

5. Conclusions

TWC’s forecasts exhibit positive skill for lead times
less than 7 days. Midrange PoPs tend to be well cali-
brated, but performance decreases with lead time and
worsens during the warm season. PoPs below 0.3 and
above 0.9 are miscalibrated and biased. Overall, almost
all lead times exhibit positive bias and the same-day
bias is significant, especially during the warm season.

As discussed previously, there is no reason, per se,
that calibration performance should decrease with lead

time. Rather, the difficulty of the forecasting task
should be reflected in the sharpness of the forecasts.
TWC’s long-term forecasts are too sharp. Apparently,
one cannot reasonably forecast a 0% or 60% chance of
precipitation 8 or 9 days from now, much less provide
these forecasts nearly 40% of the time.

There seem to be two primary areas in which TWC
could improve its forecasts: the machine guidance pro-
vided to human forecasters and the intervention tool
used by these forecasters to arrive at sensible forecasts.
The long-term forecasts, which are unedited by hu-
mans, exhibit a tendency to provide extreme forecasts
and to artificially avoid 0.5. Perhaps revisions/additions
to these models could improve performance. If not,
TWC might want to consider intervening in these fore-
casts as well. The intervention of human forecasters
increases skill, but also introduces bias. The interven-
tion tool uses a least squares procedure to adjust un-
derlying weather variables. Perhaps other approaches,
such as the application of maximum entropy techniques
(Jaynes 1957), would improve performance. Maximum
entropy techniques would avoid producing narrow and
biased forecasts.

Performance during the warm season is noticeably
worse; even though the variance of the observations is

FIG. 9. Forecast entropy for cool and warm seasons.
FIG. 10. Cool- and warm-season same-day likelihood functions.
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FIG. 11. Likelihood functions for cool and warm season for 1–9-day lead times.
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lower (see Table 6). This suggests that TWC should
concentrate its attention on improving PoPs during this
time.

In addition, providing PoPs at 0.05 intervals (i.e.,
0.05, 0.10, . . . , 0.95) might be helpful and enable TWC
to avoid forecasts of 0.0 and 1.0, which will not be well
calibrated.
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